Cargando…

Rheological, Thermal and Mechanical Characterization of Toughened Self-Healing Supramolecular Resins, Based on Hydrogen Bonding

This paper proposes the design of toughened self-healing supramolecular resins able to fulfill functional and structural requirements for industrial applications. These new nanocomposites are based on compounds acting as promotors of reversible self-healing interactions. Electrically conductive carb...

Descripción completa

Detalles Bibliográficos
Autores principales: Guadagno, Liberata, Raimondo, Marialuigia, Naddeo, Carlo, Vertuccio, Luigi, Russo, Salvatore, Iannuzzo, Generoso, Calabrese, Elisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735688/
https://www.ncbi.nlm.nih.gov/pubmed/36500943
http://dx.doi.org/10.3390/nano12234322
Descripción
Sumario:This paper proposes the design of toughened self-healing supramolecular resins able to fulfill functional and structural requirements for industrial applications. These new nanocomposites are based on compounds acting as promotors of reversible self-healing interactions. Electrically conductive carbon nanotubes, selected among those allowing to reach the electrical percolation threshold (EPT) with a very low amount of nanofiller, were dispersed in the self-healing polymeric matrix to contrast the electrical insulating properties of epoxy matrices, as required for many applications. The formulated supramolecular systems are thermally stable, up to 360 °C. Depending on the chemical formulation, the self-healing efficiency η, assessed by the fracture test, can reach almost the complete self-repairing efficiency (η = 99%). Studies on the complex viscosity of smart nanocomposites highlight that the effect of the nanofiller dominates over those due to the healing agents. The presence of healing compounds anchored to the hosting epoxy matrix determines a relevant increase in the glass transition temperature (T(g)), which results in values higher than 200 °C. Compared to the unfilled matrix, a rise from 189 °C to 223 °C is found for two of the proposed formulations.