Cargando…
Joint Cross-Consistency Learning and Multi-Feature Fusion for Person Re-Identification
To solve the problem of inadequate feature extraction by the model due to factors such as occlusion and illumination in person re-identification tasks, this paper proposed a model with a joint cross-consistency learning and multi-feature fusion person re-identification. The attention mechanism and t...
Autores principales: | Ren, Danping, He, Tingting, Dong, Huisheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735728/ https://www.ncbi.nlm.nih.gov/pubmed/36502088 http://dx.doi.org/10.3390/s22239387 |
Ejemplares similares
-
Joint Modal Alignment and Feature Enhancement for Visible-Infrared Person Re-Identification
por: Lin, Ronghui, et al.
Publicado: (2023) -
Multi-Level Fusion Temporal–Spatial Co-Attention for Video-Based Person Re-Identification
por: Pei, Shengyu, et al.
Publicado: (2021) -
A vehicle re-identification framework based on the improved multi-branch feature fusion network
por: Rong, Leilei, et al.
Publicado: (2021) -
A Multi-Attention Approach for Person Re-Identification Using Deep Learning
por: Saber, Shimaa, et al.
Publicado: (2023) -
Heterogeneous feature-aware Transformer-CNN coupling network for person re-identification
por: Li, Yanchao, et al.
Publicado: (2022)