Cargando…

A Thiosemicarbazone Derivative as a Booster in Photodynamic Therapy—A Way to Improve the Therapeutic Effect

Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators,...

Descripción completa

Detalles Bibliográficos
Autores principales: Gawecki, Robert, Polanski, Jaroslaw, Mrozek-Wilczkiewicz, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9735942/
https://www.ncbi.nlm.nih.gov/pubmed/36499695
http://dx.doi.org/10.3390/ijms232315370
Descripción
Sumario:Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators, which inhibit the final step of heme biosynthesis, thereby increasing the protoporphyrin IX concentration. In the presented work, we studied thiosemicarbazone derivative, which is a universal enhancer of the phototoxic effect. We examined several genes that are involved in the transport of the heme substrates and heme itself. The results indicate that despite an elevated level of ABCG2, which is responsible for the PpIX efflux, its concentration in a cell is sufficient to trigger a photodynamic reaction. This effect was not observed for 5-ALA alone. The analyzed cell lines differed in the scale of the effect and a correlation with the PpIX accumulation was observed. Additionally, an increased activation of the iron transporter MFNR1 was also detected, which indicated that the regulation of iron transport is essential in PDT.