Cargando…
Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks
Predicting SARS-CoV-2 mutations is difficult, but predicting recurrent mutations driven by the host, such as those caused by host deaminases, is feasible. We used machine learning to predict which positions from the SARS-CoV-2 genome will hold a recurrent mutation and which mutations will be the mos...
Autores principales: | Saldivar-Espinoza, Bryan, Macip, Guillem, Garcia-Segura, Pol, Mestres-Truyol, Júlia, Puigbò, Pere, Cereto-Massagué, Adrià, Pujadas, Gerard, Garcia-Vallve, Santiago |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736107/ https://www.ncbi.nlm.nih.gov/pubmed/36499005 http://dx.doi.org/10.3390/ijms232314683 |
Ejemplares similares
-
Haste makes waste: A critical review of docking‐based virtual screening in drug repurposing for SARS‐CoV‐2 main protease (M‐pro) inhibition
por: Macip, Guillem, et al.
Publicado: (2021) -
The Mutational Landscape of SARS-CoV-2
por: Saldivar-Espinoza, Bryan, et al.
Publicado: (2023) -
Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS-CoV-2 through Consensus Docking and Drug Reposition
por: Gimeno, Aleix, et al.
Publicado: (2020) -
A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet?
por: Macip, Guillem, et al.
Publicado: (2021) -
Could nucleocapsid be a next-generation COVID-19 vaccine candidate?
por: Saldivar-Espinoza, Bryan, et al.
Publicado: (2022)