Cargando…

Multiplexed Photonic Crystal Fiber Gas-Sensing Network Based on Intracavity Absorption

A highly sensitive hollow-core photonic crystal fiber (HC-PCF) gas-sensing network based on intracavity absorption is designed and experimentally verified. The capacity of the multichannel sensing network is expanded by time division multiplexing and wavelength division multiplexing technology. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Guangyao, Sun, Jianping, Li, Ting, Wang, Hongjun, Li, Jiahao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736176/
https://www.ncbi.nlm.nih.gov/pubmed/36501939
http://dx.doi.org/10.3390/s22239237
Descripción
Sumario:A highly sensitive hollow-core photonic crystal fiber (HC-PCF) gas-sensing network based on intracavity absorption is designed and experimentally verified. The capacity of the multichannel sensing network is expanded by time division multiplexing and wavelength division multiplexing technology. The voltage gradient method is employed in the wavelength scanning process of Fabry–Perot (F-P) filter to enhance the detection efficiency up to six times. The proposed sensing network has 16 sensing points. Experimental results show that the minimum detection limit (MDL) of this sensing system is 25.91 ppm and 26.85 ppm at the acetylene gas absorption peaks of 1530.371 nm and 1531.588 nm, respectively. As far as we know, it is the first time to obtain an intracavity sensing network via the application of an optical switch and DWDM at the same time. The sensing network can be used for high-capacity, low-concentration dangerous gas detection. It has great potential in environmental monitoring, industrial manufacturing, safety inspection and similar occasions.