Cargando…
Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment
In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the mod...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736177/ https://www.ncbi.nlm.nih.gov/pubmed/36501999 http://dx.doi.org/10.3390/s22239298 |
_version_ | 1784846958753480704 |
---|---|
author | Kim, Min-Seon Lim, Bo-Young Lee, Kisung Kwon, Hyuk-Yoon |
author_facet | Kim, Min-Seon Lim, Bo-Young Lee, Kisung Kwon, Hyuk-Yoon |
author_sort | Kim, Min-Seon |
collection | PubMed |
description | In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases. |
format | Online Article Text |
id | pubmed-9736177 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97361772022-12-11 Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment Kim, Min-Seon Lim, Bo-Young Lee, Kisung Kwon, Hyuk-Yoon Sensors (Basel) Article In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases. MDPI 2022-11-29 /pmc/articles/PMC9736177/ /pubmed/36501999 http://dx.doi.org/10.3390/s22239298 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Min-Seon Lim, Bo-Young Lee, Kisung Kwon, Hyuk-Yoon Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title | Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title_full | Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title_fullStr | Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title_full_unstemmed | Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title_short | Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment |
title_sort | effective model update for adaptive classification of text streams in a distributed learning environment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736177/ https://www.ncbi.nlm.nih.gov/pubmed/36501999 http://dx.doi.org/10.3390/s22239298 |
work_keys_str_mv | AT kimminseon effectivemodelupdateforadaptiveclassificationoftextstreamsinadistributedlearningenvironment AT limboyoung effectivemodelupdateforadaptiveclassificationoftextstreamsinadistributedlearningenvironment AT leekisung effectivemodelupdateforadaptiveclassificationoftextstreamsinadistributedlearningenvironment AT kwonhyukyoon effectivemodelupdateforadaptiveclassificationoftextstreamsinadistributedlearningenvironment |