Cargando…
Effective Model Update for Adaptive Classification of Text Streams in a Distributed Learning Environment
In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the mod...
Autores principales: | Kim, Min-Seon, Lim, Bo-Young, Lee, Kisung, Kwon, Hyuk-Yoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736177/ https://www.ncbi.nlm.nih.gov/pubmed/36501999 http://dx.doi.org/10.3390/s22239298 |
Ejemplares similares
-
A comparative experimental study of distributed storage engines for big spatial data processing using GeoSpark
por: Shin, Hansub, et al.
Publicado: (2021) -
Learning from data streams in dynamic environments
por: Sayed-Mouchaweh, Moamar
Publicado: (2016) -
Streaming chunk incremental learning for class-wise data stream classification with fast learning speed and low structural complexity
por: Junsawang, Prem, et al.
Publicado: (2019) -
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
por: Cao, Jianfang, et al.
Publicado: (2019) -
ComStreamClust: a Communicative Multi-Agent Approach to Text Clustering in Streaming Data
por: Najafi, Ali, et al.
Publicado: (2022)