Cargando…
Learning with Weak Annotations for Robust Maritime Obstacle Detection
Robust maritime obstacle detection is critical for safe navigation of autonomous boats and timely collision avoidance. The current state-of-the-art is based on deep segmentation networks trained on large datasets. However, per-pixel ground truth labeling of such datasets is labor-intensive and expen...
Autores principales: | Žust, Lojze, Kristan, Matej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736343/ https://www.ncbi.nlm.nih.gov/pubmed/36501841 http://dx.doi.org/10.3390/s22239139 |
Ejemplares similares
-
eWaSR—An Embedded-Compute-Ready Maritime Obstacle Detection Network
por: Teršek, Matija, et al.
Publicado: (2023) -
A Robust Detection Algorithm for Infrared Maritime Small and Dim Targets
por: Lu, Yuwei, et al.
Publicado: (2020) -
Maritime sector at verge of change: learning and competence needs in Finnish maritime cluster
por: Kilpi, Vesa, et al.
Publicado: (2021) -
A Weakly Supervised Learning Method for Cell Detection and Tracking Using Incomplete Initial Annotations
por: Wu, Hao, et al.
Publicado: (2023) -
Coarse-Fine-Stitched: A Robust Maritime Horizon Line Detection Method for Unmanned Surface Vehicle Applications
por: Sun, Yuan, et al.
Publicado: (2018)