Cargando…
Comparative Analyses of Unsupervised PCA K-Means Change Detection Algorithm from the Viewpoint of Follow-Up Plan
In this study, principal component analysis and k-means clustering (PCAKM) methods for synthetic aperture radar (SAR) data are analyzed to reduce the sensitivity caused by changes in the parameters and input images of the algorithm, increase the accuracy, and make an improvement in the computation t...
Autores principales: | Kılıç, Deniz Kenan, Nielsen, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736445/ https://www.ncbi.nlm.nih.gov/pubmed/36501887 http://dx.doi.org/10.3390/s22239172 |
Ejemplares similares
-
Applied unsupervised learning with R: uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA
por: Malik, Alok, et al.
Publicado: (2019) -
Unsupervised Detection of Suspicious Tissue Using Data Modeling and PCA
por: Abdel-Qader, Ikhlas, et al.
Publicado: (2006) -
Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm
por: Xu, Yaofang, et al.
Publicado: (2016) -
Improved k-t PCA Algorithm Using Artificial Sparsity in Dynamic MRI
por: Wang, Yiran, et al.
Publicado: (2017) -
Unsupervised feature extraction applied to bioinformatics: a PCA based and TD based approach
por: Taguchi, Y-h
Publicado: (2019)