Cargando…
Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance
In recent years, broadband absorbers in the long-wave infrared (LWIR) spectrum have shown great scientific value and advantages in some areas, such as thermal imaging and radiation modulation. However, designing a broadband absorber with an ultra-high absorption rate has always been a challenge. In...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736474/ https://www.ncbi.nlm.nih.gov/pubmed/36500845 http://dx.doi.org/10.3390/nano12234223 |
Sumario: | In recent years, broadband absorbers in the long-wave infrared (LWIR) spectrum have shown great scientific value and advantages in some areas, such as thermal imaging and radiation modulation. However, designing a broadband absorber with an ultra-high absorption rate has always been a challenge. In this paper, we design a near perfect absorber that is highly tunable, angle insensitive, and has polarization independence for LWIR. By using multi-mode localized surface plasmon resonance (LSPR) of a surface metal structure, the absorber achieves a very high absorption average of 99.7% in wavelengths from 9.7 μm to 12.0 μm. For incident light, the meta-structure absorber exhibits excellent polarization independence. When the incident angle increases from 0° up to 60°, the absorption rate maintains over 85%. By modulating the size of the structure, the meta-structure absorber can also achieve a high absorption rate of 95.6%, covering the entire LWIR band (8–14 μm in wavelength). This meta-structure absorber has application prospects in infrared detecting, infrared camouflage, radiation cooling, and other fields. |
---|