Cargando…

Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance

In recent years, broadband absorbers in the long-wave infrared (LWIR) spectrum have shown great scientific value and advantages in some areas, such as thermal imaging and radiation modulation. However, designing a broadband absorber with an ultra-high absorption rate has always been a challenge. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Leihao, Liu, Dingquan, Su, Junli, Li, Xingyu, Zhou, Sheng, Wang, Kaixuan, Zhang, Qiuyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736474/
https://www.ncbi.nlm.nih.gov/pubmed/36500845
http://dx.doi.org/10.3390/nano12234223
Descripción
Sumario:In recent years, broadband absorbers in the long-wave infrared (LWIR) spectrum have shown great scientific value and advantages in some areas, such as thermal imaging and radiation modulation. However, designing a broadband absorber with an ultra-high absorption rate has always been a challenge. In this paper, we design a near perfect absorber that is highly tunable, angle insensitive, and has polarization independence for LWIR. By using multi-mode localized surface plasmon resonance (LSPR) of a surface metal structure, the absorber achieves a very high absorption average of 99.7% in wavelengths from 9.7 μm to 12.0 μm. For incident light, the meta-structure absorber exhibits excellent polarization independence. When the incident angle increases from 0° up to 60°, the absorption rate maintains over 85%. By modulating the size of the structure, the meta-structure absorber can also achieve a high absorption rate of 95.6%, covering the entire LWIR band (8–14 μm in wavelength). This meta-structure absorber has application prospects in infrared detecting, infrared camouflage, radiation cooling, and other fields.