Cargando…

Colloidal Crystal Films with Narrow Reflection Bands by Hot-Pressing of Polymer-Grafted Silica Particles

Previous reports have shown that colloidal crystal (CC) films with visible Bragg reflection characteristics can be fabricated by the surface modification of monodisperse silica particles (SiPs) with poly(methyl methacrylate) (PMMA) chains, followed by hot-pressing at 150 °C. However, the reflection...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuura, Sawa, Obara, Mami, Iwata, Naoto, Furumi, Seiichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736521/
https://www.ncbi.nlm.nih.gov/pubmed/36501554
http://dx.doi.org/10.3390/polym14235157
Descripción
Sumario:Previous reports have shown that colloidal crystal (CC) films with visible Bragg reflection characteristics can be fabricated by the surface modification of monodisperse silica particles (SiPs) with poly(methyl methacrylate) (PMMA) chains, followed by hot-pressing at 150 °C. However, the reflection bands of the CC films were very broad due to their relative disordering of SiPs. In this report, we attempted to fabricate the CC films using SiPs surface-modified with poly(n-octyl acrylate) (POA) chains by hot-pressing. When the cast films of POA-grafted SiPs were prepared by hot-pressing at 100 °C, the reflection bands were narrow rather than those of CC films of PMMA-grafted SiPs. This can be ascribed to easy disentanglement of POA chains during the hot-pressing process, thereby enabling the formation of well-ordered CC structures. Moreover, the reflection colors of CC films could be easily tuned by controlling the molecular weight of POA chains grafted on the SiP surface.