Cargando…

Phytochemical Characterization of Chamomile (Matricaria recutita L.) Roots and Evaluation of Their Antioxidant and Antibacterial Potential

Matricaria recutita L., German chamomile, is one of the most widely used medicinal plants, whose efficacy has been proven in numerous studies. However, its roots have attracted only little interest so far, since mainly above-ground plant parts are used for medicinal purposes. To broaden the knowledg...

Descripción completa

Detalles Bibliográficos
Autores principales: Mailänder, Lilo K., Lorenz, Peter, Bitterling, Hannes, Stintzing, Florian C., Daniels, Rolf, Kammerer, Dietmar R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736673/
https://www.ncbi.nlm.nih.gov/pubmed/36500602
http://dx.doi.org/10.3390/molecules27238508
Descripción
Sumario:Matricaria recutita L., German chamomile, is one of the most widely used medicinal plants, whose efficacy has been proven in numerous studies. However, its roots have attracted only little interest so far, since mainly above-ground plant parts are used for medicinal purposes. To broaden the knowledge of chamomile roots, a profound phytochemical characterization was performed along with a bioactivity screening of corresponding root extracts. While volatile constituents such as chamomillol and polyynes were detected using GC-MS, HPLC-MS(n) analyses revealed the occurrence of four coumarin glycosides, more than ten phenolic acid esters and five glyceroglycolipids. Furthermore, the antioxidant activity of the extracts was evaluated. Polar extracts revealed IC(50) values ranging from 13 to 57 µg/mL in the DPPH radical scavenging assay, which is in the same range as reported for chamomile flower extracts. In addition, superoxide radical scavenging potential and mild antibacterial effects against S. aureus und B. subtilis were demonstrated. Moreover, to assess interspecies variation in chamomile roots, extracts of M. recutita were compared to those of M. discoidea DC. Interestingly, the latter revealed stronger antioxidant activity. The presented results aim at the valorization of chamomile roots, previously discarded as by-product of chamomile flower production, as a sustainable source of bioactive phytochemicals.