Cargando…
Olfactory Sensitivity Is Associated with Body Mass Index and Polymorphism in the Voltage-Gated Potassium Channels Kv1.3
Smell strongly contributes to food choice and its hedonistic evaluation. A reduction or loss of smell has been related to malnutrition problems, resulting in excessive weight loss or gain. Voltage-gated potassium channels Kv1.3 are widely expressed in the olfactory bulb, and contribute mainly to the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736683/ https://www.ncbi.nlm.nih.gov/pubmed/36501016 http://dx.doi.org/10.3390/nu14234986 |
Sumario: | Smell strongly contributes to food choice and its hedonistic evaluation. A reduction or loss of smell has been related to malnutrition problems, resulting in excessive weight loss or gain. Voltage-gated potassium channels Kv1.3 are widely expressed in the olfactory bulb, and contribute mainly to the value of the resting membrane potential and to the frequency of action potentials. Mutations in the Kv1.3 gene are associated with alterations in glycemic homeostasis and olfactory sensitivity. We evaluated the olfactory performance in 102 healthy subjects and its association with BMI and polymorphism in the human Kv1.3 gene. Olfactory performance, based on the olfactory threshold, discrimination and identification scores and their summed score (TDI), was measured using the “Sniffin’ Sticks” test. Subjects were genotyped for the rs2821557 polymorphism of the Kv1.3 gene, whose major allele T was associated with a super-smeller phenotype, lower plasma glucose levels and resistance to diet-induced obesity as compared with the minor allele C. Based on the Kv1.3 genotype, the TDI and I olfactory scores obtained by the subjects were the following: TT > TC > CC. Subjects who were TT homozygous or heterozygous exhibited lower BMIs and reached higher olfactory scores than those with the CC genotype. The results were sex-dependent: heterozygous females performed better than heterozygous males. These findings show an inverse relationship between olfactory function and BMI, and a significant effect of the Kv1.3 genotypes on the olfactory functions and on the BMIs of the subjects. Finally, they suggest that the sex-related differences in the olfactory function can be partially ascribed to the Kv1.3 gene’s polymorphism. |
---|