Cargando…
Structure of Shock Wave in Nanoscale Porous Nickel at Pressures up to 7 GPa
The structure of shock waves in pressed porous samples of nickel nanoparticles was investigated in a series of uniaxial planar plate impact experiments in the pressure range of 1.6–7.1 GPa. The initial porosity of the samples was about 50%. Wave profiles were obtained using laser velocimetry techniq...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736727/ https://www.ncbi.nlm.nih.gov/pubmed/36499997 http://dx.doi.org/10.3390/ma15238501 |
Sumario: | The structure of shock waves in pressed porous samples of nickel nanoparticles was investigated in a series of uniaxial planar plate impact experiments in the pressure range of 1.6–7.1 GPa. The initial porosity of the samples was about 50%. Wave profiles were obtained using laser velocimetry techniques. The nanomaterial demonstrated a complex response to shock loading including the development of a two-wave structure associated with precursor and compaction waves. The effect on profiles and measurements of the observed precursor reverberations propagating between the front of a compaction wave and a monitored sample surface was described. The obtained wave profiles were used to estimate the thicknesses of precursor and compaction wave fronts. |
---|