Cargando…
Explainable AI Algorithms for Vibration Data-Based Fault Detection: Use Case-Adadpted Methods and Critical Evaluation
Analyzing vibration data using deep neural networks is an effective way to detect damages in rotating machinery at an early stage. However, the black-box approach of these methods often does not provide a satisfactory solution because the cause of classifications is not comprehensible to humans. The...
Autores principales: | Mey, Oliver, Neufeld, Deniz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736871/ https://www.ncbi.nlm.nih.gov/pubmed/36501736 http://dx.doi.org/10.3390/s22239037 |
Ejemplares similares
-
An Explainable AI-Based Fault Diagnosis Model for Bearings
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques
por: Sanakkayala, Deva Chaitanya, et al.
Publicado: (2022) -
Ball bearing vibration data for detecting and quantifying spall faults
por: Ismail, Mohamed A.A., et al.
Publicado: (2023) -
Advanced Vibration-Based Fault Diagnosis and Vibration Control Methods
por: Song, Xiaohua, et al.
Publicado: (2023) -
Fault Detection and Identification Method for Quadcopter Based on Airframe Vibration Signals
por: Zhang, Xiaomin, et al.
Publicado: (2021)