Cargando…

Non-Digestible Oligosaccharides: A Novel Treatment for Respiratory Infections?

Emerging antimicrobial resistance in respiratory infections requires novel intervention strategies. Non-digestible oligosaccharides (NDOs) are a diverse group of carbohydrates with broad protective effects. In addition to promoting the colonization of beneficial gut microbiota and maintaining the in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Yang, Folkerts, Gert, Braber, Saskia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736878/
https://www.ncbi.nlm.nih.gov/pubmed/36501062
http://dx.doi.org/10.3390/nu14235033
Descripción
Sumario:Emerging antimicrobial resistance in respiratory infections requires novel intervention strategies. Non-digestible oligosaccharides (NDOs) are a diverse group of carbohydrates with broad protective effects. In addition to promoting the colonization of beneficial gut microbiota and maintaining the intestinal homeostasis, NDOs act as decoy receptors, effectively blocking the attachment of pathogens on host cells. NDOs also function as a bacteriostatic agent, inhibiting the growth of specific pathogenic bacteria. Based on this fact, NDOs potentiate the actions of antimicrobial drugs. Therefore, there is an increasing interest in characterizing the anti-infective properties of NDOs. This focused review provides insights into the mechanisms by which representative NDOs may suppress respiratory infections by targeting pathogens and host cells. We summarized the most interesting mechanisms of NDOs, including maintenance of gut microbiota homeostasis, interference with TLR-mediated signaling, anti-oxidative effects and bacterial toxin neutralization, bacteriostatic and bactericidal effects, and anti-adhesion or anti-invasive properties. A detailed understanding of anti-infective mechanisms of NDOs against respiratory pathogens may contribute to the development of add-on therapy or alternatives to antimicrobials.