Cargando…

A Comprehensive Study on EMI Shielding Performance of Carbon Nanomaterials-Embedded CFRP or GFRP Composites

The rapid advancement of electrical and telecommunication facilities has resulted in increasing requirements for the development of electromagnetic interference (EMI) shielding composites. Accordingly, an experimental study was conducted to evaluate the EMI shielding performance of carbon nanomateri...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Daeik, Kim, Bum-Jun, Nam, Il-Woo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736903/
https://www.ncbi.nlm.nih.gov/pubmed/36501618
http://dx.doi.org/10.3390/polym14235224
Descripción
Sumario:The rapid advancement of electrical and telecommunication facilities has resulted in increasing requirements for the development of electromagnetic interference (EMI) shielding composites. Accordingly, an experimental study was conducted to evaluate the EMI shielding performance of carbon nanomaterial (CNM)-embedded carbon-fiber-reinforced polymer (CFRP) or glass-fiber-reinforced polymer (GFRP) composites. Nine combinations of CNMs and carbon or glass fibers were used to fabricate the composites. The synergistic effects of CNMs on the EMI shielding performance were systematically investigated. The results indicated that plate-type CNMs (i.e., graphene and graphite nanoplatelets) have more prominent effects than fiber-type CNMs (carbon nanofibers). The composites fabricated with CFRP afforded higher EMI shielding than the GFRP-based composites. Among the eighteen samples, 3% CNT-GNP in CFRP composites, which included plate-typed CNM, exhibited the best EMI shielding performances, showing 38.6 dB at 0.7 GHz. This study helps understand the shielding performance of CNM-embedded CFRP and GFRP composites in electrical and telecommunication facilities.