Cargando…
Applying Self-Supervised Representation Learning for Emotion Recognition Using Physiological Signals
The use of machine learning (ML) techniques in affective computing applications focuses on improving the user experience in emotion recognition. The collection of input data (e.g., physiological signals), together with expert annotations are part of the established standard supervised learning metho...
Autores principales: | Montero Quispe, Kevin G., Utyiama, Daniel M. S., dos Santos, Eulanda M., Oliveira, Horácio A. B. F., Souto, Eduardo J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736913/ https://www.ncbi.nlm.nih.gov/pubmed/36501803 http://dx.doi.org/10.3390/s22239102 |
Ejemplares similares
-
MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors
por: Montero Quispe, Kevin G., et al.
Publicado: (2018) -
Human Activity Recognition Based on Symbolic Representation Algorithms for Inertial Sensors
por: Sousa Lima, Wesllen, et al.
Publicado: (2018) -
Self-supervised representation learning for surgical activity recognition
por: Paysan, Daniel, et al.
Publicado: (2021) -
Supervised Filter Learning for Representation Based Face Recognition
por: Bi, Chao, et al.
Publicado: (2016) -
Comparing supervised and unsupervised approaches to multimodal emotion recognition
por: Fernández Carbonell, Marcos, et al.
Publicado: (2021)