Cargando…
XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries
The instability and variable lifetime are the benefits of high efficiency and low-cost issues in lithium-ion batteries.An accurate equipment’s remaining useful life prediction is essential for successful requirement-based maintenance to improve dependability and lower total maintenance costs. Howeve...
Autores principales: | Jafari, Sadiqa, Byun, Yung-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736930/ https://www.ncbi.nlm.nih.gov/pubmed/36502223 http://dx.doi.org/10.3390/s22239522 |
Ejemplares similares
-
State of Charge Estimation of Lithium-Ion Batteries Based on an Adaptive Iterative Extended Kalman Filter for AUVs
por: Fu, You, et al.
Publicado: (2022) -
A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter
por: Yang, Shichun, et al.
Publicado: (2021) -
Kalman-Filter-Based Learning of Characteristic Profiles of Lithium-Ion Batteries †
por: Arima, Masahito, et al.
Publicado: (2022) -
Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries
por: Lin, Qizhe, et al.
Publicado: (2023) -
State of Charge Estimation and Evaluation of Lithium Battery Using Kalman Filter Algorithms
por: Hu, Longzhou, et al.
Publicado: (2022)