Cargando…

Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice

The balance of people with multiple sclerosis (PwMS) is commonly assessed during neurological examinations through clinical Romberg and tandem gait tests that are often not sensitive enough to unravel subtle deficits in early-stage PwMS. Inertial sensors (IMUs) could overcome this drawback. Neverthe...

Descripción completa

Detalles Bibliográficos
Autores principales: Carpinella, Ilaria, Anastasi, Denise, Gervasoni, Elisa, Di Giovanni, Rachele, Tacchino, Andrea, Brichetto, Giampaolo, Confalonieri, Paolo, Rovaris, Marco, Solaro, Claudio, Ferrarin, Maurizio, Cattaneo, Davide
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736931/
https://www.ncbi.nlm.nih.gov/pubmed/36502265
http://dx.doi.org/10.3390/s22239558
_version_ 1784847157816197120
author Carpinella, Ilaria
Anastasi, Denise
Gervasoni, Elisa
Di Giovanni, Rachele
Tacchino, Andrea
Brichetto, Giampaolo
Confalonieri, Paolo
Rovaris, Marco
Solaro, Claudio
Ferrarin, Maurizio
Cattaneo, Davide
author_facet Carpinella, Ilaria
Anastasi, Denise
Gervasoni, Elisa
Di Giovanni, Rachele
Tacchino, Andrea
Brichetto, Giampaolo
Confalonieri, Paolo
Rovaris, Marco
Solaro, Claudio
Ferrarin, Maurizio
Cattaneo, Davide
author_sort Carpinella, Ilaria
collection PubMed
description The balance of people with multiple sclerosis (PwMS) is commonly assessed during neurological examinations through clinical Romberg and tandem gait tests that are often not sensitive enough to unravel subtle deficits in early-stage PwMS. Inertial sensors (IMUs) could overcome this drawback. Nevertheless, IMUs are not yet fully integrated into clinical practice due to issues including the difficulty to understand/interpret the big number of parameters provided and the lack of cut-off values to identify possible abnormalities. In an attempt to overcome these limitations, an instrumented modified Romberg test (ImRomberg: standing on foam with eyes closed while wearing an IMU on the trunk) was administered to 81 early-stage PwMS and 38 healthy subjects (HS). To facilitate clinical interpretation, 21 IMU-based parameters were computed and reduced through principal component analysis into two components, sway complexity and sway intensity, descriptive of independent aspects of balance, presenting a clear clinical meaning and significant correlations with at least one clinical scale. Compared to HS, early-stage PwMS showed a 228% reduction in sway complexity and a 63% increase in sway intensity, indicating, respectively, a less automatic (more conscious) balance control and larger and faster trunk movements during upright posture. Cut-off values were derived to identify the presence of balance abnormalities and if these abnormalities are clinically meaningful. By applying these thresholds and integrating the ImRomberg test with the clinical tandem gait test, balance impairments were identified in 58% of PwMS versus the 17% detected by traditional Romberg and tandem gait tests. The higher sensitivity of the proposed approach would allow for the direct identification of early-stage PwMS who could benefit from preventive rehabilitation interventions aimed at slowing MS-related functional decline during neurological examinations and with minimal modifications to the tests commonly performed.
format Online
Article
Text
id pubmed-9736931
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97369312022-12-11 Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice Carpinella, Ilaria Anastasi, Denise Gervasoni, Elisa Di Giovanni, Rachele Tacchino, Andrea Brichetto, Giampaolo Confalonieri, Paolo Rovaris, Marco Solaro, Claudio Ferrarin, Maurizio Cattaneo, Davide Sensors (Basel) Article The balance of people with multiple sclerosis (PwMS) is commonly assessed during neurological examinations through clinical Romberg and tandem gait tests that are often not sensitive enough to unravel subtle deficits in early-stage PwMS. Inertial sensors (IMUs) could overcome this drawback. Nevertheless, IMUs are not yet fully integrated into clinical practice due to issues including the difficulty to understand/interpret the big number of parameters provided and the lack of cut-off values to identify possible abnormalities. In an attempt to overcome these limitations, an instrumented modified Romberg test (ImRomberg: standing on foam with eyes closed while wearing an IMU on the trunk) was administered to 81 early-stage PwMS and 38 healthy subjects (HS). To facilitate clinical interpretation, 21 IMU-based parameters were computed and reduced through principal component analysis into two components, sway complexity and sway intensity, descriptive of independent aspects of balance, presenting a clear clinical meaning and significant correlations with at least one clinical scale. Compared to HS, early-stage PwMS showed a 228% reduction in sway complexity and a 63% increase in sway intensity, indicating, respectively, a less automatic (more conscious) balance control and larger and faster trunk movements during upright posture. Cut-off values were derived to identify the presence of balance abnormalities and if these abnormalities are clinically meaningful. By applying these thresholds and integrating the ImRomberg test with the clinical tandem gait test, balance impairments were identified in 58% of PwMS versus the 17% detected by traditional Romberg and tandem gait tests. The higher sensitivity of the proposed approach would allow for the direct identification of early-stage PwMS who could benefit from preventive rehabilitation interventions aimed at slowing MS-related functional decline during neurological examinations and with minimal modifications to the tests commonly performed. MDPI 2022-12-06 /pmc/articles/PMC9736931/ /pubmed/36502265 http://dx.doi.org/10.3390/s22239558 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Carpinella, Ilaria
Anastasi, Denise
Gervasoni, Elisa
Di Giovanni, Rachele
Tacchino, Andrea
Brichetto, Giampaolo
Confalonieri, Paolo
Rovaris, Marco
Solaro, Claudio
Ferrarin, Maurizio
Cattaneo, Davide
Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title_full Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title_fullStr Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title_full_unstemmed Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title_short Balance Impairments in People with Early-Stage Multiple Sclerosis: Boosting the Integration of Instrumented Assessment in Clinical Practice
title_sort balance impairments in people with early-stage multiple sclerosis: boosting the integration of instrumented assessment in clinical practice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736931/
https://www.ncbi.nlm.nih.gov/pubmed/36502265
http://dx.doi.org/10.3390/s22239558
work_keys_str_mv AT carpinellailaria balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT anastasidenise balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT gervasonielisa balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT digiovannirachele balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT tacchinoandrea balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT brichettogiampaolo balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT confalonieripaolo balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT rovarismarco balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT solaroclaudio balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT ferrarinmaurizio balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice
AT cattaneodavide balanceimpairmentsinpeoplewithearlystagemultiplesclerosisboostingtheintegrationofinstrumentedassessmentinclinicalpractice