Cargando…
The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure
Chitinases and chitinase-like proteins are thought to play a role in innate inflammatory responses. Our study aimed to assess whether chitinase concentration and activity in induced sputum (IS) of patients exposed to tobacco smoke are related to the level of airway inflammation including the level a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736934/ https://www.ncbi.nlm.nih.gov/pubmed/36497025 http://dx.doi.org/10.3390/cells11233765 |
Sumario: | Chitinases and chitinase-like proteins are thought to play a role in innate inflammatory responses. Our study aimed to assess whether chitinase concentration and activity in induced sputum (IS) of patients exposed to tobacco smoke are related to the level of airway inflammation including the level and activity of chitinases and chitinase-like proteins. The study included 22 patients with chronic obstructive pulmonary disease (COPD), 12 non-COPD smokers, and nine nonsmoking subjects. Sputum CHIT1 and YKL-40 levels and chitinolytic activity were compared with sputum IL-6, IL-8, IL-18, and MMP-9 levels. A hierarchical cluster analysis was also performed. Sputum YKL-40 was higher in COPD patients than in the control groups. Sputum CHIT1 and YKL-40 levels correlated with IS inflammatory cell count as well as with MMP-9 and IL-8 levels. Two main clusters were revealed: Cluster 1 had lower chitinase levels and activity, lower IS macrophage and neutrophil count, and lower IS IL-8, IL-18, and MMP-9 than Cluster 2. Comparison of COPD patients from both clusters revealed significant differences in the IS inflammatory profile despite comparable clinical and functional data. Our findings seem to confirm the involvement of chitinases in smoking-associated chronic airway inflammation and show that airway chitinases may be a potential novel marker in COPD phenotyping. |
---|