Cargando…
Deep Scattering Spectrum Germaneness for Fault Detection and Diagnosis for Component-Level Prognostics and Health Management (PHM)
Most methodologies for fault detection and diagnosis in prognostics and health management (PHM) systems use machine learning (ML) or deep learning (DL), in which either some features are extracted beforehand (in the case of typical ML approaches) or the filters are used to extract features autonomou...
Autor principal: | Rohan, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736965/ https://www.ncbi.nlm.nih.gov/pubmed/36501766 http://dx.doi.org/10.3390/s22239064 |
Ejemplares similares
-
Rotate Vector (RV) Reducer Fault Detection and Diagnosis System: Towards Component Level Prognostics and Health Management (PHM)
por: Rohan, Ali, et al.
Publicado: (2020) -
Measurement and Evaluation for Prognostics and Health Management (PHM) for Manufacturing Operations – Summary of an Interactive Workshop Highlighting PHM Trends
por: Weiss, Brian A., et al.
Publicado: (2021) -
Pulse Height Monitor (Type PHM-1 and PHM-2)
por: Khun, G
Publicado: (1989) -
Bio-Inspired PHM Model for Diagnostics of Faults in Power Transformers Using Dissolved Gas-in-Oil Data
por: Dong, Huanyu, et al.
Publicado: (2019) -
Adaptive Multi-scale PHM for Robotic Assembly Processes
por: Choo, Benjamin Y., et al.
Publicado: (2015)