Cargando…
An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis
The main objective of this work was the removal of eosin Y and green malachite from an aqueous medium by using a cellulose-based biodegradable interpenetrated network (IPN). The IPN was obtained by the sequenced synthesis method. In the first step, cellulose was crosslinked with epichlorohydrin (ECH...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737197/ https://www.ncbi.nlm.nih.gov/pubmed/36501485 http://dx.doi.org/10.3390/polym14235090 |
_version_ | 1784847225668501504 |
---|---|
author | Mihoub, Meriem Hamri, Salah Bouchaour, Tewfik Popa, Marcel Popa, Dragos Marius Bedjaoui Alachaher, Lamia Hamcerencu, Mihaela |
author_facet | Mihoub, Meriem Hamri, Salah Bouchaour, Tewfik Popa, Marcel Popa, Dragos Marius Bedjaoui Alachaher, Lamia Hamcerencu, Mihaela |
author_sort | Mihoub, Meriem |
collection | PubMed |
description | The main objective of this work was the removal of eosin Y and green malachite from an aqueous medium by using a cellulose-based biodegradable interpenetrated network (IPN). The IPN was obtained by the sequenced synthesis method. In the first step, cellulose was crosslinked with epichlorohydrin (ECH). In the second step, the obtained gels were swollen in a reactive mixture solution, which was based on the monomers 2-hydroxyethyl methacrylate (HEMA) and 1,6- hexanediol diacrylate (HDDA). After this, swelling equilibrium was reached through the gels’ exposition to UV radiation. An infrared spectroscopy (FTIR) was used to analyze the bond stretching, which confirmed the IPN’s formation. The swelling kinetics in aqueous mediums with different pH values showed a high swelling at a basic pH value and a low response in neutral and acidic media. The IPNs showed an improvement in water uptake, compared to the networks based on PHEMA or cellulose. The IPN was used to remove dyes from the water. The results showed that a high percentage of green malachite was removed by the IPN in six minutes of contact time. The experimental results were confirmed by the docking/modeling method of the system (IPN/Dye). The different physical interactions between the IPN and the dyes’ molecules were investigated. The interactions of the hydrogen bonds with malachite green were stronger than those with eosin Y, which was in good agreement with the experimental results. |
format | Online Article Text |
id | pubmed-9737197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97371972022-12-11 An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis Mihoub, Meriem Hamri, Salah Bouchaour, Tewfik Popa, Marcel Popa, Dragos Marius Bedjaoui Alachaher, Lamia Hamcerencu, Mihaela Polymers (Basel) Article The main objective of this work was the removal of eosin Y and green malachite from an aqueous medium by using a cellulose-based biodegradable interpenetrated network (IPN). The IPN was obtained by the sequenced synthesis method. In the first step, cellulose was crosslinked with epichlorohydrin (ECH). In the second step, the obtained gels were swollen in a reactive mixture solution, which was based on the monomers 2-hydroxyethyl methacrylate (HEMA) and 1,6- hexanediol diacrylate (HDDA). After this, swelling equilibrium was reached through the gels’ exposition to UV radiation. An infrared spectroscopy (FTIR) was used to analyze the bond stretching, which confirmed the IPN’s formation. The swelling kinetics in aqueous mediums with different pH values showed a high swelling at a basic pH value and a low response in neutral and acidic media. The IPNs showed an improvement in water uptake, compared to the networks based on PHEMA or cellulose. The IPN was used to remove dyes from the water. The results showed that a high percentage of green malachite was removed by the IPN in six minutes of contact time. The experimental results were confirmed by the docking/modeling method of the system (IPN/Dye). The different physical interactions between the IPN and the dyes’ molecules were investigated. The interactions of the hydrogen bonds with malachite green were stronger than those with eosin Y, which was in good agreement with the experimental results. MDPI 2022-11-23 /pmc/articles/PMC9737197/ /pubmed/36501485 http://dx.doi.org/10.3390/polym14235090 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mihoub, Meriem Hamri, Salah Bouchaour, Tewfik Popa, Marcel Popa, Dragos Marius Bedjaoui Alachaher, Lamia Hamcerencu, Mihaela An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title | An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title_full | An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title_fullStr | An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title_full_unstemmed | An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title_short | An Interpenetrating Polymer Network Hydrogel Based on Cellulose, Applied to Remove Colorant Traces from the Water Medium: Electrostatic Interactions Analysis |
title_sort | interpenetrating polymer network hydrogel based on cellulose, applied to remove colorant traces from the water medium: electrostatic interactions analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737197/ https://www.ncbi.nlm.nih.gov/pubmed/36501485 http://dx.doi.org/10.3390/polym14235090 |
work_keys_str_mv | AT mihoubmeriem aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT hamrisalah aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT bouchaourtewfik aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT popamarcel aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT popadragosmarius aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT bedjaouialachaherlamia aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT hamcerencumihaela aninterpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT mihoubmeriem interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT hamrisalah interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT bouchaourtewfik interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT popamarcel interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT popadragosmarius interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT bedjaouialachaherlamia interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis AT hamcerencumihaela interpenetratingpolymernetworkhydrogelbasedoncelluloseappliedtoremovecoloranttracesfromthewatermediumelectrostaticinteractionsanalysis |