Cargando…

Promoter Methylation of Cancer Stem Cell Surface Markers as an Epigenetic Biomarker for Prognosis of Oral Squamous Cell Carcinoma

Growing evidence suggests that genetic and epigenetic factors, including environmental factors, contribute to the development of oral squamous cell carcinoma (OSCC). Here, we investigated the transcriptional silencing of the CD24, CD44, CD133, and CD147 genes, which are well-known cancer stem cell s...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Yu Kyeong, Park, Ha Young, Park, Sae-Gwang, Hwang, Jae Joon, Park, Hae Ryoun, Yi, Joo Mi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737199/
https://www.ncbi.nlm.nih.gov/pubmed/36498950
http://dx.doi.org/10.3390/ijms232314624
Descripción
Sumario:Growing evidence suggests that genetic and epigenetic factors, including environmental factors, contribute to the development of oral squamous cell carcinoma (OSCC). Here, we investigated the transcriptional silencing of the CD24, CD44, CD133, and CD147 genes, which are well-known cancer stem cell surface markers in various cancer types, including OSCC. We first examined the correlation between the transcriptional expression level and reactivation by 5-aza-2′-deoxycytidine (5-aza-dC) and the promoter methylation levels of the four genes in several OSCC cell lines. We observed promoter hypermethylation for the CD24, CD133, and CD147 genes at 70%, 75%, and 70%, respectively, in OSCC cell lines compared to normal oral mucosa tissues (<53%), indicating that this methylation pattern is cancer-specific, which was confirmed by bisulfite sequencing analysis. More specifically, the expression and methylation profiles of CD133 and CD147 extracted from The Cancer Genome Atlas (TCGA) database were negatively correlated, supporting their epigenetic regulation in primary OSCC tumors. The methylation status of CD133 and CD147 was associated with poor survival in patients with OSCC using the TCGA database. Our findings provide additional insight into the abnormal DNA methylation of CD133 and that CD147 could be used for the diagnosis and therapeutic treatment of patients with OSCC.