Cargando…
Accurate Diagnosis and Survival Prediction of Bladder Cancer Using Deep Learning on Histological Slides
SIMPLE SUMMARY: Early diagnosis and treatment are essential to reduce the mortality rate of bladder cancer. However, current techniques of diagnosis are susceptible to pathologist variability, and histopathological prognostic methods are insufficient to cover all features of muscle-invasive bladder...
Autores principales: | Zheng, Qingyuan, Yang, Rui, Ni, Xinmiao, Yang, Song, Xiong, Lin, Yan, Dandan, Xia, Lingli, Yuan, Jingping, Wang, Jingsong, Jiao, Panpan, Wu, Jiejun, Hao, Yiqun, Wang, Jianguo, Guo, Liantao, Jiang, Zhengyu, Wang, Lei, Chen, Zhiyuan, Liu, Xiuheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737237/ https://www.ncbi.nlm.nih.gov/pubmed/36497289 http://dx.doi.org/10.3390/cancers14235807 |
Ejemplares similares
-
Predicting Lymph Node Metastasis Status from Primary Muscle-Invasive Bladder Cancer Histology Slides Using Deep Learning: A Retrospective Multicenter Study
por: Zheng, Qingyuan, et al.
Publicado: (2023) -
Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer
por: Zheng, Qingyuan, et al.
Publicado: (2023) -
A Weakly Supervised Deep Learning Model and Human–Machine Fusion for Accurate Grading of Renal Cell Carcinoma from Histopathology Slides
por: Zheng, Qingyuan, et al.
Publicado: (2023) -
Quantitative Assessment of Tumor-Infiltrating Lymphocytes Using Machine Learning Predicts Survival in Muscle-Invasive Bladder Cancer
por: Zheng, Qingyuan, et al.
Publicado: (2022) -
The Histological Slides and Drawings of Cajal
por: Garcia-Lopez, Pablo, et al.
Publicado: (2010)