Cargando…

The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites

Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal pr...

Descripción completa

Detalles Bibliográficos
Autor principal: Lipińska, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737336/
https://www.ncbi.nlm.nih.gov/pubmed/36501477
http://dx.doi.org/10.3390/polym14235078
_version_ 1784847261011804160
author Lipińska, Magdalena
author_facet Lipińska, Magdalena
author_sort Lipińska, Magdalena
collection PubMed
description Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G′ and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χ(c) increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T(0.5%), T(1%) and T(3%). Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed.
format Online
Article
Text
id pubmed-9737336
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97373362022-12-11 The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites Lipińska, Magdalena Polymers (Basel) Article Polyhedral oligomeric silsesquioxane POSS nanoparticles can be applied as reinforcing additives modifying various properties of biodegradable polymers. The effects of aminopropylisobutyl POSS (amine-POSS), trisilanolisooctyl-POSS (HO-POSS) and glycidyl-POSS (Gly-POSS) on the viscoelastic, thermal properties and crystallization of biodegradable poly(ε-caprolactone) PCL were studied. The analysis of the viscoelastic properties at ambient temperature indicated that aminopropylisobutyl POSS (amine-POSS) and glycidyl-POSS (Gly-POSS) enhanced the dynamic mechanical properties of PCL. The increase in the storage shear modulus G′ and loss modulus G″ was observed. The plasticizing effect of trisilanolisooctyl POSS (HO-POSS) due to the presence of long isoctyl groups was confirmed. As a result, the crystallization of PCL was facilitated and the degree of crystallinity of χ(c) increased up to 50.9%. The damping properties and the values of tan δ for PCL/HO-POSS composition increased from 0.052 to 0.069. The TGA results point out the worsening of the PCL thermal stability, with lower values of T(0.5%), T(1%) and T(3%). Both HO-POSS and Gly-POSS facilitated the relaxation of molten PCL. The presence of Gly-POSS influenced the changes that occurred in the viscoelastic properties of the molten PCL due to the thermo-mechanical degradation of the material; a positive impact was observed. MDPI 2022-11-23 /pmc/articles/PMC9737336/ /pubmed/36501477 http://dx.doi.org/10.3390/polym14235078 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lipińska, Magdalena
The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title_full The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title_fullStr The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title_full_unstemmed The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title_short The Effect of Various Polyhedral Oligomeric Silsesquioxanes on Viscoelastic, Thermal Properties and Crystallization of Poly(ε-caprolactone) Nanocomposites
title_sort effect of various polyhedral oligomeric silsesquioxanes on viscoelastic, thermal properties and crystallization of poly(ε-caprolactone) nanocomposites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737336/
https://www.ncbi.nlm.nih.gov/pubmed/36501477
http://dx.doi.org/10.3390/polym14235078
work_keys_str_mv AT lipinskamagdalena theeffectofvariouspolyhedraloligomericsilsesquioxanesonviscoelasticthermalpropertiesandcrystallizationofpolyecaprolactonenanocomposites
AT lipinskamagdalena effectofvariouspolyhedraloligomericsilsesquioxanesonviscoelasticthermalpropertiesandcrystallizationofpolyecaprolactonenanocomposites