Cargando…

Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate

Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in isobornyl methacrylate (IBOMA). After the addition of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Junhao, Tang, Liming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737471/
https://www.ncbi.nlm.nih.gov/pubmed/36500080
http://dx.doi.org/10.3390/ma15238586
_version_ 1784847297493860352
author Zhou, Junhao
Tang, Liming
author_facet Zhou, Junhao
Tang, Liming
author_sort Zhou, Junhao
collection PubMed
description Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in isobornyl methacrylate (IBOMA). After the addition of the photoinitiator PI 1173, the resulting prepolymer resins were irradiated by UV light to form cured materials. The structures of the prepolymers were confirmed by (1)H NMR, FT-IR, and GPC. SEM analyses proved that no obvious phase separation was observed within the cured sample. As the content of HIH increased, the viscosity of the prepolymers increased slightly. In addition, the gel content, solvent resistance, Shore hardness, Young’s modulus, and the tensile strength of the cured films increased, whereas the elongation at break decreased gradually. The volume shrinkage of the cured samples ranged between 4.5% and 4.8%. DMA analyses showed that the Tgs of the cured samples increased as more HIH structures existed. TGA analyses revealed that the cured samples had high thermal stability. This solvent-free fabrication process was simple, convenient, and controllable. By simply regulating the contents of HIPIH and HIH in the prepolymers, the performances of the cured materials could be adjusted to a wide range.
format Online
Article
Text
id pubmed-9737471
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97374712022-12-11 Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate Zhou, Junhao Tang, Liming Materials (Basel) Article Polyurethane acrylate prepolymers with different contents of HIPIH and HIH were synthesized via reacting excessive isophorone diisocyanate (IPDI) with poly(propylene glycol) (PPG) and then end-capping with 2-hydroxypropyl methacrylate (HPMA) in isobornyl methacrylate (IBOMA). After the addition of the photoinitiator PI 1173, the resulting prepolymer resins were irradiated by UV light to form cured materials. The structures of the prepolymers were confirmed by (1)H NMR, FT-IR, and GPC. SEM analyses proved that no obvious phase separation was observed within the cured sample. As the content of HIH increased, the viscosity of the prepolymers increased slightly. In addition, the gel content, solvent resistance, Shore hardness, Young’s modulus, and the tensile strength of the cured films increased, whereas the elongation at break decreased gradually. The volume shrinkage of the cured samples ranged between 4.5% and 4.8%. DMA analyses showed that the Tgs of the cured samples increased as more HIH structures existed. TGA analyses revealed that the cured samples had high thermal stability. This solvent-free fabrication process was simple, convenient, and controllable. By simply regulating the contents of HIPIH and HIH in the prepolymers, the performances of the cured materials could be adjusted to a wide range. MDPI 2022-12-01 /pmc/articles/PMC9737471/ /pubmed/36500080 http://dx.doi.org/10.3390/ma15238586 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhou, Junhao
Tang, Liming
Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title_full Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title_fullStr Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title_full_unstemmed Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title_short Synthesis and Structure of 2-Hydroxypropyl Methacrylate-Capped Isophorone Diisocyanate and Poly(Propylene Glycol) Urethane Mixtures and the Properties of their UV-Cured Co-Networks with Isobornyl Methacrylate
title_sort synthesis and structure of 2-hydroxypropyl methacrylate-capped isophorone diisocyanate and poly(propylene glycol) urethane mixtures and the properties of their uv-cured co-networks with isobornyl methacrylate
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737471/
https://www.ncbi.nlm.nih.gov/pubmed/36500080
http://dx.doi.org/10.3390/ma15238586
work_keys_str_mv AT zhoujunhao synthesisandstructureof2hydroxypropylmethacrylatecappedisophoronediisocyanateandpolypropyleneglycolurethanemixturesandthepropertiesoftheiruvcuredconetworkswithisobornylmethacrylate
AT tangliming synthesisandstructureof2hydroxypropylmethacrylatecappedisophoronediisocyanateandpolypropyleneglycolurethanemixturesandthepropertiesoftheiruvcuredconetworkswithisobornylmethacrylate