Cargando…

Stabilization of an Aqueous Bio-Based Wax Nano-Emulsion through Encapsulation

The emulsification of biowaxes in an aqueous environment is important to broaden their application range and make them suitable for incorporation in water-based systems. The study here presented proposes a method for emulsification of carnauba wax by an in-situ imidization reaction of ammonolysed st...

Descripción completa

Detalles Bibliográficos
Autores principales: Samyn, Pieter, Rastogi, Vibhore K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737540/
https://www.ncbi.nlm.nih.gov/pubmed/36500952
http://dx.doi.org/10.3390/nano12234329
Descripción
Sumario:The emulsification of biowaxes in an aqueous environment is important to broaden their application range and make them suitable for incorporation in water-based systems. The study here presented proposes a method for emulsification of carnauba wax by an in-situ imidization reaction of ammonolysed styrene (maleic anhydride), resulting in the encapsulation of the wax into stabilized organic nanoparticles. A parameter study is presented on the influences of wax concentrations (30 to 80 wt.-%) and variation in reaction conditions (degree of imidization) on the stability and morphology of the nanoparticles. Similar studies are done for encapsulation and emulsification of paraffin wax as a reference material. An analytical analysis with Raman spectroscopy and infrared spectroscopy indicated different reactivity of the waxes towards encapsulation, with the bio-based carnauba wax showing better compatibility with the formation of imidized styrene (maleic anhydride) nanoparticles. The latter can be ascribed to the higher functionality of the carnauba wax inducing more interactions with the organic nanoparticle phase compared to paraffin wax. In parallel, the thermal and mechanical stability of nanoparticles with encapsulated carnauba wax is higher than paraffin wax, as studied by differential scanning calorimetry, thermogravimetric analysis and dynamic mechanical analysis. In conclusion, a stable aqueous emulsion with a maximum of 70 wt.-% encapsulated carnauba wax was obtained, being distributed as a droplet phase in 200 nm organic nanoparticles.