Cargando…
Co-Occurrence Fingerprint Data-Based Heterogeneous Transfer Learning Framework for Indoor Positioning
Distribution discrepancy is an intrinsic challenge in existing fingerprint-based indoor positioning system(s) (FIPS) due to real-time environmental variations; thus, the positioning model needs to be reconstructed frequently based on newly collected training data. However, it is expensive or impossi...
Autores principales: | Huang, Jian, Si, Haonan, Guo, Xiansheng, Zhong, Ke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737723/ https://www.ncbi.nlm.nih.gov/pubmed/36501829 http://dx.doi.org/10.3390/s22239127 |
Ejemplares similares
-
OHetTLAL: An Online Transfer Learning Method for Fingerprint-Based Indoor Positioning
por: Gidey, Hailu Tesfay, et al.
Publicado: (2022) -
Data Fusion Methods for Indoor Positioning Systems Based on Channel State Information Fingerprinting
por: Gidey, Hailu Tesfay, et al.
Publicado: (2022) -
Heterogeneous Transfer Learning for Wi-Fi Indoor Positioning Based Hybrid Feature Selection
por: Gidey, Hailu Tesfay, et al.
Publicado: (2022) -
Few-Shot Learning for WiFi Fingerprinting Indoor Positioning
por: Ma, Zhenjie, et al.
Publicado: (2023) -
Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM
por: Tang, Jian, et al.
Publicado: (2015)