Cargando…
Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
Over recent years, with the advances in image recognition technology for deep learning, researchers have devoted continued efforts toward importing anomaly detection technology into the production line of automatic optical detection. Although unsupervised learning helps overcome the high costs assoc...
Autores principales: | Tang, Ta-Wei, Hsu, Hakiem, Huang, Wei-Ren, Li, Kuan-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737726/ https://www.ncbi.nlm.nih.gov/pubmed/36502029 http://dx.doi.org/10.3390/s22239327 |
Ejemplares similares
-
A Smart-Anomaly-Detection System for Industrial Machines Based on Feature Autoencoder and Deep Learning
por: Ahmed, Imran, et al.
Publicado: (2023) -
Anomaly Detection Neural Network with Dual Auto-Encoders GAN and Its Industrial Inspection Applications
por: Tang, Ta-Wei, et al.
Publicado: (2020) -
Human embryonic stem cell classification: random network with autoencoded feature extractor
por: Guan, Benjamin X., et al.
Publicado: (2021) -
Anomaly Detection Using Autoencoder Reconstruction upon Industrial Motors
por: Givnan, Sean, et al.
Publicado: (2022) -
Anomaly Detection of Water Level Using Deep Autoencoder
por: Nicholaus, Isack Thomas, et al.
Publicado: (2021)