Cargando…

RvD1(n-3 DPA) Downregulates the Transcription of Pro-Inflammatory Genes in Oral Epithelial Cells and Reverses Nuclear Translocation of Transcription Factor p65 after TNF-α Stimulation

Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1(n-3 DPA) and that cultured OECs respond to RvD1(n-3 DPA) addition...

Descripción completa

Detalles Bibliográficos
Autores principales: Balta, Maria G., Schreurs, Olav, Halder, Rashi, Küntziger, Thomas M., Sætre, Frank, Blix, Inger Johanne S., Bækkevold, Espen S., Glaab, Enrico, Schenck, Karl
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737907/
https://www.ncbi.nlm.nih.gov/pubmed/36499208
http://dx.doi.org/10.3390/ijms232314878
Descripción
Sumario:Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1(n-3 DPA) and that cultured OECs respond to RvD1(n-3 DPA) addition by intracellular calcium release, nuclear receptor translocation and transcription of genes coding for antimicrobial peptides. The aim of the present study was to assess the functional outcome of RvD1(n-3 DPA)–signaling in OECs under inflammatory conditions. To this end, we performed transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1(n-3 DPA) and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target genes. Further bioinformatics analyses showed that RvD1(n-3 DPA) inhibited the expression of several genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of RvD1(n-3 DPA) to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1(n-3 DPA) increases nuclear export of p65. Taken together, our observations suggest that SPMs also have the potential to be used as a therapeutic aid when inflammation is established.