Cargando…
Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives
Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737924/ https://www.ncbi.nlm.nih.gov/pubmed/36500862 http://dx.doi.org/10.3390/nano12234239 |
_version_ | 1784847410046959616 |
---|---|
author | Chianese, Federico Aversa, Lucrezia Verucchi, Roberto Cassinese, Antonio |
author_facet | Chianese, Federico Aversa, Lucrezia Verucchi, Roberto Cassinese, Antonio |
author_sort | Chianese, Federico |
collection | PubMed |
description | Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties. |
format | Online Article Text |
id | pubmed-9737924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97379242022-12-11 Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives Chianese, Federico Aversa, Lucrezia Verucchi, Roberto Cassinese, Antonio Nanomaterials (Basel) Article Non-covalent π-π and dipolar interactions with small aromatic molecules have been widely demonstrated to be a valid option to tune graphene work functions without adding extrinsic scattering centers for charge carriers. In this work, we investigated the interaction between a CVD-graphene monolayer and a thermally evaporated sub-monolayer and the following few-layer thin films of similar perylene diimide derivatives: PDI8-CN2 and PDIF-CN2. The molecular influence on the graphene work function was estimated by XPS and UPS analysis and by investigating the surface potentials via scanning Kelvin probe force microscopy. The perfluorinated decoration and the steric interaction in the early stages of the film growth determined a positive work function shift as high as 0.7 eV in the case of PDIF-CN2, with respect to the value of 4.41 eV for the intrinsic graphene. Our results unambiguously highlight the absence of valence band shifts in the UPS analysis, indicating the prevalence of dipolar interactions between the graphene surface and the organic species enhanced by the presence of the fluorine-enriched moieties. MDPI 2022-11-28 /pmc/articles/PMC9737924/ /pubmed/36500862 http://dx.doi.org/10.3390/nano12234239 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chianese, Federico Aversa, Lucrezia Verucchi, Roberto Cassinese, Antonio Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title | Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title_full | Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title_fullStr | Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title_full_unstemmed | Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title_short | Molecular Doping of CVD-Graphene Surfaces by Perfluoroalkyl-Substituted Perylene Diimides Derivatives |
title_sort | molecular doping of cvd-graphene surfaces by perfluoroalkyl-substituted perylene diimides derivatives |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737924/ https://www.ncbi.nlm.nih.gov/pubmed/36500862 http://dx.doi.org/10.3390/nano12234239 |
work_keys_str_mv | AT chianesefederico moleculardopingofcvdgraphenesurfacesbyperfluoroalkylsubstitutedperylenediimidesderivatives AT aversalucrezia moleculardopingofcvdgraphenesurfacesbyperfluoroalkylsubstitutedperylenediimidesderivatives AT verucchiroberto moleculardopingofcvdgraphenesurfacesbyperfluoroalkylsubstitutedperylenediimidesderivatives AT cassineseantonio moleculardopingofcvdgraphenesurfacesbyperfluoroalkylsubstitutedperylenediimidesderivatives |