Cargando…

Nonlinear Optical Properties of Zinc Oxide Nanoparticle Colloids Prepared by Pulsed Laser Ablation in Distilled Water

The nonlinear optical properties of zinc oxide nanoparticles (ZnONPs) in distilled water were measured using a femtosecond laser and the Z-scan technique. The ZnONPs colloids were created by the ablation of zinc bulk in distilled water with a 532 nm Nd: YAG laser. Transmission electron microscopy, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamed, Tarek, Farhan, Ali, Ahmed, Hanan, Ashour, Mohamed, Mamdouh, Samar, Schuch, Reinhold
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737988/
https://www.ncbi.nlm.nih.gov/pubmed/36500847
http://dx.doi.org/10.3390/nano12234220
Descripción
Sumario:The nonlinear optical properties of zinc oxide nanoparticles (ZnONPs) in distilled water were measured using a femtosecond laser and the Z-scan technique. The ZnONPs colloids were created by the ablation of zinc bulk in distilled water with a 532 nm Nd: YAG laser. Transmission electron microscopy, an ultraviolet-visible spectrophotometer, and atomic absorption spectrophotometry were used to determine the size, shape, absorption spectra, and concentration of the ZnONPs colloids. The nonlinear absorption coefficient and nonlinear refractive index were measured at different excitation wavelengths and intensities. The nonlinear absorption coefficient of the ZnONPs colloids was found to be positive, caused by reverse saturable absorption, whereas the nonlinear refractive index was found to be negative due to self-defocusing in the ZnONPs. Both laser parameters, such as excitation wavelength and input intensity, and nanoparticle features, such as concentration and size, were found to influence the nonlinear optical properties of the ZnONPs.