Cargando…

Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium

Multi-structural polymer composites are widely used in the mechanical engineering, automotive, aviation and oil refining industries, as well as in the printing industry as a shock-absorbing deckle on the offset cylinders of printing machines. During offset printing, composites come into contact with...

Descripción completa

Detalles Bibliográficos
Autores principales: Kondratov, Alexander, Konyukhov, Valery, Yamilinets, Stanislav, Marchenko, Ekaterina, Baigonakova, Gulsharat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738001/
https://www.ncbi.nlm.nih.gov/pubmed/36501569
http://dx.doi.org/10.3390/polym14235177
_version_ 1784847428927619072
author Kondratov, Alexander
Konyukhov, Valery
Yamilinets, Stanislav
Marchenko, Ekaterina
Baigonakova, Gulsharat
author_facet Kondratov, Alexander
Konyukhov, Valery
Yamilinets, Stanislav
Marchenko, Ekaterina
Baigonakova, Gulsharat
author_sort Kondratov, Alexander
collection PubMed
description Multi-structural polymer composites are widely used in the mechanical engineering, automotive, aviation and oil refining industries, as well as in the printing industry as a shock-absorbing deckle on the offset cylinders of printing machines. During offset printing, composites come into contact with inks and washing solutions, the components of which penetrate the material and cause the polymers to swell. This process degrades the print quality, and for this reason the study of its features is relevant. The prerequisites for this work are the study of the fundamental laws of diffusion and sorption of liquids by polymers with different micro- and macro-structures in different physical states and in different forms (e.g., films, sheets, fibers and fabrics). The combination of polymer materials in the composition of multi-structural fabric blankets makes it possible to obtain materials with unique mechanical properties and high resistance to liquid penetrating media and to use them in high-tech processes of multi-color printing with high resolution and color rendering. This article reports for the first time the kinetics and thermodynamics results obtained from the swelling of multi-structural polymeric blankets in solvents used in printing, and the effect of sorption of different polar liquids on the viscoelastic strain under compression during the operation of the damping systems of printing machines. Using mathematical models of activated liquid diffusion in polymers and deformation of a viscoelastic body, the swelling rate constants, solvent diffusion coefficients (the kinetic characteristics of the swelling process) and Flory–Huggins parameters (the thermodynamic characteristics of the interaction of the solvent with the composite) for composite–solvent systems with several chemical composition variants were determined. The elastic modulus and the viscosity coefficient of the composite under liquid saturation were calculated based on the experimental cyclic compression data. The range of change in the compression and restoration times of the polymeric blankets (0.09 s ÷ 0.78 s) was determined. It was shown that the composite swelled to a limited extent in all the studied liquids. All solvents used were thermodynamically poor (χ > 0.5). It has been established that rubber–fabric blankets coated with nitrile rubber are the least resistant to the action of dichloroethane, and that blankets with layers of polyolefins are not resistant to ethyl acetate. Water significantly affects the physicochemical properties of rubber–fabric blankets with a large proportion of cotton fabric layers. The data obtained can serve as a basis for optimizing the compositions of inks and cleaning solutions, as well as a theoretical basis for the thermodynamics of composite–solvent systems.
format Online
Article
Text
id pubmed-9738001
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97380012022-12-11 Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium Kondratov, Alexander Konyukhov, Valery Yamilinets, Stanislav Marchenko, Ekaterina Baigonakova, Gulsharat Polymers (Basel) Article Multi-structural polymer composites are widely used in the mechanical engineering, automotive, aviation and oil refining industries, as well as in the printing industry as a shock-absorbing deckle on the offset cylinders of printing machines. During offset printing, composites come into contact with inks and washing solutions, the components of which penetrate the material and cause the polymers to swell. This process degrades the print quality, and for this reason the study of its features is relevant. The prerequisites for this work are the study of the fundamental laws of diffusion and sorption of liquids by polymers with different micro- and macro-structures in different physical states and in different forms (e.g., films, sheets, fibers and fabrics). The combination of polymer materials in the composition of multi-structural fabric blankets makes it possible to obtain materials with unique mechanical properties and high resistance to liquid penetrating media and to use them in high-tech processes of multi-color printing with high resolution and color rendering. This article reports for the first time the kinetics and thermodynamics results obtained from the swelling of multi-structural polymeric blankets in solvents used in printing, and the effect of sorption of different polar liquids on the viscoelastic strain under compression during the operation of the damping systems of printing machines. Using mathematical models of activated liquid diffusion in polymers and deformation of a viscoelastic body, the swelling rate constants, solvent diffusion coefficients (the kinetic characteristics of the swelling process) and Flory–Huggins parameters (the thermodynamic characteristics of the interaction of the solvent with the composite) for composite–solvent systems with several chemical composition variants were determined. The elastic modulus and the viscosity coefficient of the composite under liquid saturation were calculated based on the experimental cyclic compression data. The range of change in the compression and restoration times of the polymeric blankets (0.09 s ÷ 0.78 s) was determined. It was shown that the composite swelled to a limited extent in all the studied liquids. All solvents used were thermodynamically poor (χ > 0.5). It has been established that rubber–fabric blankets coated with nitrile rubber are the least resistant to the action of dichloroethane, and that blankets with layers of polyolefins are not resistant to ethyl acetate. Water significantly affects the physicochemical properties of rubber–fabric blankets with a large proportion of cotton fabric layers. The data obtained can serve as a basis for optimizing the compositions of inks and cleaning solutions, as well as a theoretical basis for the thermodynamics of composite–solvent systems. MDPI 2022-11-28 /pmc/articles/PMC9738001/ /pubmed/36501569 http://dx.doi.org/10.3390/polym14235177 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kondratov, Alexander
Konyukhov, Valery
Yamilinets, Stanislav
Marchenko, Ekaterina
Baigonakova, Gulsharat
Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title_full Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title_fullStr Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title_full_unstemmed Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title_short Compression Relaxation of Multi-Structure Polymer Composites in Penetrating Liquid Medium
title_sort compression relaxation of multi-structure polymer composites in penetrating liquid medium
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738001/
https://www.ncbi.nlm.nih.gov/pubmed/36501569
http://dx.doi.org/10.3390/polym14235177
work_keys_str_mv AT kondratovalexander compressionrelaxationofmultistructurepolymercompositesinpenetratingliquidmedium
AT konyukhovvalery compressionrelaxationofmultistructurepolymercompositesinpenetratingliquidmedium
AT yamilinetsstanislav compressionrelaxationofmultistructurepolymercompositesinpenetratingliquidmedium
AT marchenkoekaterina compressionrelaxationofmultistructurepolymercompositesinpenetratingliquidmedium
AT baigonakovagulsharat compressionrelaxationofmultistructurepolymercompositesinpenetratingliquidmedium