Cargando…
Lymphocyte Classification from Hoechst Stained Slides with Deep Learning
SIMPLE SUMMARY: We train a deep neural network model to identify CD3 expressing cells from Hoechst stained slides only, without the need for costly immunofluorescence. Using interpretability techniques to understand what the model has learned, we find that morphological features in the nuclear chrom...
Autores principales: | Cooper, Jessica, Um, In Hwa, Arandjelović, Ognjen, Harrison, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738034/ https://www.ncbi.nlm.nih.gov/pubmed/36497439 http://dx.doi.org/10.3390/cancers14235957 |
Ejemplares similares
-
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019) -
Corrigendum: Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2020) -
Reproducibility of deep learning in digital pathology whole slide image analysis
por: Fell, Christina, et al.
Publicado: (2022) -
Rhodamine–Hoechst positional isomers for highly efficient staining of heterochromatin
por: Bucevičius, Jonas, et al.
Publicado: (2018) -
Photocaged Hoechst Enables Subnuclear Visualization and Cell Selective Staining of DNA in vivo
por: Lämmle, Carina A., et al.
Publicado: (2020)