Cargando…
Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact
Optimising the performance of materials requires, among other things, the characterisation of residual stresses during the design stage. Raman spectroscopy offers access to these residual stresses at the micrometre scale when this inelastic light scattering is active in these materials. In this case...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738170/ https://www.ncbi.nlm.nih.gov/pubmed/36500141 http://dx.doi.org/10.3390/ma15238645 |
_version_ | 1784847471890923520 |
---|---|
author | Delbé, Karl De Sousa, Cyril Grizet, François Paris, Jean-Yves Yahiaoui, Malik |
author_facet | Delbé, Karl De Sousa, Cyril Grizet, François Paris, Jean-Yves Yahiaoui, Malik |
author_sort | Delbé, Karl |
collection | PubMed |
description | Optimising the performance of materials requires, among other things, the characterisation of residual stresses during the design stage. Raman spectroscopy offers access to these residual stresses at the micrometre scale when this inelastic light scattering is active in these materials. In this case, the relationship between the Raman mode shift and the pressure must be known. High-pressure cells with diamond anvils or bending instruments coupled to Raman spectrometers are habitually used to determine this relationship. In this article, we propose a new method that involves a Hertzian contact to obtain this relationship. A device that compresses an alumina ball against a transparent glass plane is connected to a Raman spectrometer. Under these conditions, the contact pressure can be as high as 1.5 GPa. The contact between the glass plane and the ball is observed through a diaphragm. Several hundred Raman spectra are recorded depending on the contact diameter. The spectral profiles obtained represent the shift in the Raman modes of alumina and glass along the contact diameter. Hertz’s theory accurately describes the pressure profile as a function of position for elastic materials. Therefore, the contact diameter can be measured by fitting the spectral profile with a function identical to the Hertz profile. We then deduce the maximum pressure. Next, the calculated pressure profile along the contact diameter is correlated with the spectral profile. We obtain a pressure dependence of the Raman mode with a coefficient equal to 2.07 cm [Formula: see text] /GPa for the Eg modes of alumina at 417 cm [Formula: see text] , which is in good agreement with the literature. In the case of glass, we refine the measurement of the Q3 mode shift at 1096 cm [Formula: see text] in the studied pressure range compared to the literature. We find a coefficient of 4.31 cm [Formula: see text] /GPa. This work on static contacts opens up promising prospects for investigations into dynamic contacts in tribology. |
format | Online Article Text |
id | pubmed-9738170 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97381702022-12-11 Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact Delbé, Karl De Sousa, Cyril Grizet, François Paris, Jean-Yves Yahiaoui, Malik Materials (Basel) Article Optimising the performance of materials requires, among other things, the characterisation of residual stresses during the design stage. Raman spectroscopy offers access to these residual stresses at the micrometre scale when this inelastic light scattering is active in these materials. In this case, the relationship between the Raman mode shift and the pressure must be known. High-pressure cells with diamond anvils or bending instruments coupled to Raman spectrometers are habitually used to determine this relationship. In this article, we propose a new method that involves a Hertzian contact to obtain this relationship. A device that compresses an alumina ball against a transparent glass plane is connected to a Raman spectrometer. Under these conditions, the contact pressure can be as high as 1.5 GPa. The contact between the glass plane and the ball is observed through a diaphragm. Several hundred Raman spectra are recorded depending on the contact diameter. The spectral profiles obtained represent the shift in the Raman modes of alumina and glass along the contact diameter. Hertz’s theory accurately describes the pressure profile as a function of position for elastic materials. Therefore, the contact diameter can be measured by fitting the spectral profile with a function identical to the Hertz profile. We then deduce the maximum pressure. Next, the calculated pressure profile along the contact diameter is correlated with the spectral profile. We obtain a pressure dependence of the Raman mode with a coefficient equal to 2.07 cm [Formula: see text] /GPa for the Eg modes of alumina at 417 cm [Formula: see text] , which is in good agreement with the literature. In the case of glass, we refine the measurement of the Q3 mode shift at 1096 cm [Formula: see text] in the studied pressure range compared to the literature. We find a coefficient of 4.31 cm [Formula: see text] /GPa. This work on static contacts opens up promising prospects for investigations into dynamic contacts in tribology. MDPI 2022-12-04 /pmc/articles/PMC9738170/ /pubmed/36500141 http://dx.doi.org/10.3390/ma15238645 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Delbé, Karl De Sousa, Cyril Grizet, François Paris, Jean-Yves Yahiaoui, Malik Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title | Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title_full | Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title_fullStr | Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title_full_unstemmed | Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title_short | Determination of the Pressure Dependence of Raman Mode for an Alumina–Glass Pair in Hertzian Contact |
title_sort | determination of the pressure dependence of raman mode for an alumina–glass pair in hertzian contact |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738170/ https://www.ncbi.nlm.nih.gov/pubmed/36500141 http://dx.doi.org/10.3390/ma15238645 |
work_keys_str_mv | AT delbekarl determinationofthepressuredependenceoframanmodeforanaluminaglasspairinhertziancontact AT desousacyril determinationofthepressuredependenceoframanmodeforanaluminaglasspairinhertziancontact AT grizetfrancois determinationofthepressuredependenceoframanmodeforanaluminaglasspairinhertziancontact AT parisjeanyves determinationofthepressuredependenceoframanmodeforanaluminaglasspairinhertziancontact AT yahiaouimalik determinationofthepressuredependenceoframanmodeforanaluminaglasspairinhertziancontact |