Cargando…
Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest
Flowering time is an important target for breeders in developing new varieties adapted to changing conditions. In this work, a new approach is proposed in which the SNP markers influencing time to flowering in mung bean are selected as important features in a random forest model. The genotypic and w...
Autores principales: | Bavykina, Maria, Kostina, Nadezhda, Lee, Cheng-Ruei, Schafleitner, Roland, Bishop-von Wettberg, Eric, Nuzhdin, Sergey V., Samsonova, Maria, Gursky, Vitaly, Kozlov, Konstantin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738219/ https://www.ncbi.nlm.nih.gov/pubmed/36501364 http://dx.doi.org/10.3390/plants11233327 |
Ejemplares similares
-
Dynamical climatic model for time to flowering in Vigna radiata
por: Kozlov, Konstantin, et al.
Publicado: (2020) -
Genome-wide association study in accessions of the mini-core collection of mungbean (Vigna radiata) from the World Vegetable Gene Bank (Taiwan)
por: Sokolkova, Alena, et al.
Publicado: (2020) -
Dynamical Modeling of the Core Gene Network Controlling Flowering Suggests Cumulative Activation From the FLOWERING LOCUS T Gene Homologs in Chickpea
por: Gursky, Vitaly V., et al.
Publicado: (2018) -
Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors
por: Kozlov, Konstantin, et al.
Publicado: (2019) -
In silico evolution of the Drosophila gap gene regulatory sequence under elevated mutational pressure
por: Chertkova, Aleksandra A., et al.
Publicado: (2017)