Cargando…

Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain

The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in Acremonium chrysogenum high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a specia...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhgun, Alexander A., Eldarov, Mikhail A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738377/
https://www.ncbi.nlm.nih.gov/pubmed/36498951
http://dx.doi.org/10.3390/ijms232314625
_version_ 1784847526232326144
author Zhgun, Alexander A.
Eldarov, Mikhail A.
author_facet Zhgun, Alexander A.
Eldarov, Mikhail A.
author_sort Zhgun, Alexander A.
collection PubMed
description The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in Acremonium chrysogenum high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a special synthetic medium on which we revealed the opposite effect of polyamines. The addition of 1,3-diaminopropane resulted in an increase in the yield of CPC by 12–15%. However, the addition of spermidine resulted in a decrease in the yield of CPC by 14–15% and accumulation of its metabolic pathway precursor, deacetylcephalosporin C (DAC); the total amount of cephems (DAC and CPC) was the same as after the addition of DAP. This indicates that spermidine, but not 1,3-diaminopropane, affects the final stage of CPC biosynthesis, associated with the acetylation of its precursor. In both cases, upregulation of biosynthetic genes from beta-lactam BGCs occurred at the same level as compared to the control; expression of transport genes was at the control level. The opposite effect may be due to the fact that N(1)-acetylation is much more efficient during spermidine catabolism than for 1,3-diaminopropane. The addition of spermidine, but not 1,3-diaminopropane, depleted the pool of acetyl coenzyme A by more than two-fold compared to control, which could lead to the accumulation of DAC.
format Online
Article
Text
id pubmed-9738377
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97383772022-12-11 Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain Zhgun, Alexander A. Eldarov, Mikhail A. Int J Mol Sci Article The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in Acremonium chrysogenum high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a special synthetic medium on which we revealed the opposite effect of polyamines. The addition of 1,3-diaminopropane resulted in an increase in the yield of CPC by 12–15%. However, the addition of spermidine resulted in a decrease in the yield of CPC by 14–15% and accumulation of its metabolic pathway precursor, deacetylcephalosporin C (DAC); the total amount of cephems (DAC and CPC) was the same as after the addition of DAP. This indicates that spermidine, but not 1,3-diaminopropane, affects the final stage of CPC biosynthesis, associated with the acetylation of its precursor. In both cases, upregulation of biosynthetic genes from beta-lactam BGCs occurred at the same level as compared to the control; expression of transport genes was at the control level. The opposite effect may be due to the fact that N(1)-acetylation is much more efficient during spermidine catabolism than for 1,3-diaminopropane. The addition of spermidine, but not 1,3-diaminopropane, depleted the pool of acetyl coenzyme A by more than two-fold compared to control, which could lead to the accumulation of DAC. MDPI 2022-11-23 /pmc/articles/PMC9738377/ /pubmed/36498951 http://dx.doi.org/10.3390/ijms232314625 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhgun, Alexander A.
Eldarov, Mikhail A.
Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title_full Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title_fullStr Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title_full_unstemmed Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title_short Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain
title_sort spermidine and 1,3-diaminopropane have opposite effects on the final stage of cephalosporin c biosynthesis in high-yielding acremonium chrysogenum strain
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738377/
https://www.ncbi.nlm.nih.gov/pubmed/36498951
http://dx.doi.org/10.3390/ijms232314625
work_keys_str_mv AT zhgunalexandera spermidineand13diaminopropanehaveoppositeeffectsonthefinalstageofcephalosporincbiosynthesisinhighyieldingacremoniumchrysogenumstrain
AT eldarovmikhaila spermidineand13diaminopropanehaveoppositeeffectsonthefinalstageofcephalosporincbiosynthesisinhighyieldingacremoniumchrysogenumstrain