Cargando…
Digital Histopathological Discrimination of Label-Free Tumoral Tissues by Artificial Intelligence Phase-Imaging Microscopy
Histopathology is the gold standard for disease diagnosis. The use of digital histology on fresh samples can reduce processing time and potential image artifacts, as label-free samples do not need to be fixed nor stained. This fact allows for a faster diagnosis, increasing the speed of the process a...
Autores principales: | Ganoza-Quintana, José Luis, Arce-Diego, José Luis, Fanjul-Vélez, Félix |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738430/ https://www.ncbi.nlm.nih.gov/pubmed/36501995 http://dx.doi.org/10.3390/s22239295 |
Ejemplares similares
-
Application of Classification Algorithms to Diffuse Reflectance Spectroscopy Measurements for Ex Vivo Characterization of Biological Tissues
por: Fanjul-Vélez, Félix, et al.
Publicado: (2020) -
Artificial intelligence in label-free microscopy: biological cell classification by time stretch
por: Mahjoubfar, Ata, et al.
Publicado: (2017) -
Serial optical coherence microscopy for label-free volumetric histopathology
por: Min, Eunjung, et al.
Publicado: (2020) -
Artificial Intelligence and Digital Microscopy Applications in Diagnostic Hematopathology
por: El Achi, Hanadi, et al.
Publicado: (2020) -
Recognition of Cutaneous Melanoma on Digitized Histopathological Slides via Artificial Intelligence Algorithm
por: De Logu, Francesco, et al.
Publicado: (2020)