Cargando…
A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard
With the gradual increase in the annual production of citrus, the efficiency of human labor has become the bottleneck limiting production. To achieve an unmanned citrus picking technology, the detection accuracy, prediction speed, and lightweight deployment of the model are important issues. Traditi...
Autores principales: | Chen, Junyang, Liu, Hui, Zhang, Yating, Zhang, Daike, Ouyang, Hongkun, Chen, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738521/ https://www.ncbi.nlm.nih.gov/pubmed/36501301 http://dx.doi.org/10.3390/plants11233260 |
Ejemplares similares
-
Green Citrus Detection and Counting in Orchards Based on YOLOv5-CS and AI Edge System
por: Lyu, Shilei, et al.
Publicado: (2022) -
Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
por: Huang, Peile, et al.
Publicado: (2023) -
Rapid detection of Yunnan Xiaomila based on lightweight YOLOv7 algorithm
por: Wang, Fenghua, et al.
Publicado: (2023) -
An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
por: Li, Chang, et al.
Publicado: (2023) -
STMS-YOLOv5: A Lightweight Algorithm for Gear Surface Defect Detection
por: Yan, Rui, et al.
Publicado: (2023)