Cargando…
A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis
Aims: The role of inflammation markers in myocarditis is unclear. We assessed the diagnostic and prognostic correlates of C-reactive protein (CRP) at diagnosis in patients with myocarditis. Methods and results: We retrospectively enrolled patients with clinically suspected (CS) or biopsy-proven (BP)...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738618/ https://www.ncbi.nlm.nih.gov/pubmed/36498643 http://dx.doi.org/10.3390/jcm11237068 |
_version_ | 1784847590649495552 |
---|---|
author | Baritussio, Anna Cheng, Chun-yan Lorenzoni, Giulia Basso, Cristina Rizzo, Stefania De Gaspari, Monica Fachin, Francesco Giordani, Andrea Silvio Ocagli, Honoria Pontara, Elena Cattini, Maria Grazia Peloso Bison, Elisa Gallo, Nicoletta Plebani, Mario Tarantini, Giuseppe Iliceto, Sabino Gregori, Dario Marcolongo, Renzo Caforio, Alida Linda Patrizia |
author_facet | Baritussio, Anna Cheng, Chun-yan Lorenzoni, Giulia Basso, Cristina Rizzo, Stefania De Gaspari, Monica Fachin, Francesco Giordani, Andrea Silvio Ocagli, Honoria Pontara, Elena Cattini, Maria Grazia Peloso Bison, Elisa Gallo, Nicoletta Plebani, Mario Tarantini, Giuseppe Iliceto, Sabino Gregori, Dario Marcolongo, Renzo Caforio, Alida Linda Patrizia |
author_sort | Baritussio, Anna |
collection | PubMed |
description | Aims: The role of inflammation markers in myocarditis is unclear. We assessed the diagnostic and prognostic correlates of C-reactive protein (CRP) at diagnosis in patients with myocarditis. Methods and results: We retrospectively enrolled patients with clinically suspected (CS) or biopsy-proven (BP) myocarditis, with available CRP at diagnosis. Clinical, laboratory and imaging data were collected at diagnosis and at follow-up visits. To evaluate predictors of death/heart transplant (Htx), a machine-learning approach based on random forest for survival data was employed. We included 409 patients (74% males, aged 37 ± 15, median follow-up 2.9 years). Abnormal CRP was reported in 288 patients, mainly with CS myocarditis (p < 0.001), recent viral infection, shorter symptoms duration (p = 0.001), chest pain (p < 0.001), better functional class at diagnosis (p = 0.018) and higher troponin I values (p < 0.001). Death/Htx was reported in 13 patients, of whom 10 had BP myocarditis (overall 10-year survival 94%). Survival rates did not differ according to CRP levels (p = 0.23). The strongest survival predictor was LVEF, followed by anti-nuclear auto-antibodies (ANA) and BP status. Conclusions: Raised CRP at diagnosis identifies patients with CS myocarditis and less severe clinical features, but does not contribute to predicting survival. Main death/Htx predictors are reduced LVEF, BP diagnosis and positive ANA. |
format | Online Article Text |
id | pubmed-9738618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97386182022-12-11 A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis Baritussio, Anna Cheng, Chun-yan Lorenzoni, Giulia Basso, Cristina Rizzo, Stefania De Gaspari, Monica Fachin, Francesco Giordani, Andrea Silvio Ocagli, Honoria Pontara, Elena Cattini, Maria Grazia Peloso Bison, Elisa Gallo, Nicoletta Plebani, Mario Tarantini, Giuseppe Iliceto, Sabino Gregori, Dario Marcolongo, Renzo Caforio, Alida Linda Patrizia J Clin Med Article Aims: The role of inflammation markers in myocarditis is unclear. We assessed the diagnostic and prognostic correlates of C-reactive protein (CRP) at diagnosis in patients with myocarditis. Methods and results: We retrospectively enrolled patients with clinically suspected (CS) or biopsy-proven (BP) myocarditis, with available CRP at diagnosis. Clinical, laboratory and imaging data were collected at diagnosis and at follow-up visits. To evaluate predictors of death/heart transplant (Htx), a machine-learning approach based on random forest for survival data was employed. We included 409 patients (74% males, aged 37 ± 15, median follow-up 2.9 years). Abnormal CRP was reported in 288 patients, mainly with CS myocarditis (p < 0.001), recent viral infection, shorter symptoms duration (p = 0.001), chest pain (p < 0.001), better functional class at diagnosis (p = 0.018) and higher troponin I values (p < 0.001). Death/Htx was reported in 13 patients, of whom 10 had BP myocarditis (overall 10-year survival 94%). Survival rates did not differ according to CRP levels (p = 0.23). The strongest survival predictor was LVEF, followed by anti-nuclear auto-antibodies (ANA) and BP status. Conclusions: Raised CRP at diagnosis identifies patients with CS myocarditis and less severe clinical features, but does not contribute to predicting survival. Main death/Htx predictors are reduced LVEF, BP diagnosis and positive ANA. MDPI 2022-11-29 /pmc/articles/PMC9738618/ /pubmed/36498643 http://dx.doi.org/10.3390/jcm11237068 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baritussio, Anna Cheng, Chun-yan Lorenzoni, Giulia Basso, Cristina Rizzo, Stefania De Gaspari, Monica Fachin, Francesco Giordani, Andrea Silvio Ocagli, Honoria Pontara, Elena Cattini, Maria Grazia Peloso Bison, Elisa Gallo, Nicoletta Plebani, Mario Tarantini, Giuseppe Iliceto, Sabino Gregori, Dario Marcolongo, Renzo Caforio, Alida Linda Patrizia A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title | A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title_full | A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title_fullStr | A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title_full_unstemmed | A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title_short | A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis |
title_sort | machine-learning model for the prognostic role of c-reactive protein in myocarditis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738618/ https://www.ncbi.nlm.nih.gov/pubmed/36498643 http://dx.doi.org/10.3390/jcm11237068 |
work_keys_str_mv | AT baritussioanna amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT chengchunyan amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT lorenzonigiulia amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT bassocristina amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT rizzostefania amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT degasparimonica amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT fachinfrancesco amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT giordaniandreasilvio amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT ocaglihonoria amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT pontaraelena amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT cattinimariagraziapeloso amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT bisonelisa amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT gallonicoletta amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT plebanimario amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT tarantinigiuseppe amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT ilicetosabino amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT gregoridario amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT marcolongorenzo amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT caforioalidalindapatrizia amachinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT baritussioanna machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT chengchunyan machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT lorenzonigiulia machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT bassocristina machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT rizzostefania machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT degasparimonica machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT fachinfrancesco machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT giordaniandreasilvio machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT ocaglihonoria machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT pontaraelena machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT cattinimariagraziapeloso machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT bisonelisa machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT gallonicoletta machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT plebanimario machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT tarantinigiuseppe machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT ilicetosabino machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT gregoridario machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT marcolongorenzo machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis AT caforioalidalindapatrizia machinelearningmodelfortheprognosticroleofcreactiveproteininmyocarditis |