Cargando…
A Tiny Model for Fast and Precise Ship Detection via Feature Channel Pruning
It is of great significance to accurately detect ships on the ocean. To obtain higher detection performance, many researchers use deep learning to identify ships from images instead of traditional detection methods. Nevertheless, the marine environment is relatively complex, making it quite difficul...
Autores principales: | Yang, Yana, Xiao, Shuai, Yang, Jiachen, Cheng, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738650/ https://www.ncbi.nlm.nih.gov/pubmed/36502044 http://dx.doi.org/10.3390/s22239331 |
Ejemplares similares
-
Filter Pruning via Measuring Feature Map Information
por: Shao, Linsong, et al.
Publicado: (2021) -
Sar Ship Detection Based on Convnext with Multi-Pooling Channel Attention and Feature Intensification Pyramid Network
por: Wei, Fanming, et al.
Publicado: (2023) -
Identification of plant leaf diseases by deep learning based on channel attention and channel pruning
por: Chen, Riyao, et al.
Publicado: (2022) -
DDD TinyML: A TinyML-Based Driver Drowsiness Detection Model Using Deep Learning
por: Alajlan, Norah N., et al.
Publicado: (2023) -
Random pruning: channel sparsity by expectation scaling factor
por: Sun, Chuanmeng, et al.
Publicado: (2023)