Cargando…

Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques

Head-mounted displays are virtual reality devices that may be equipped with sensors and cameras to measure a patient’s heart rate through facial regions. Heart rate is an essential body signal that can be used to remotely monitor users in a variety of situations. There is currently no study that pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Pagano, Tiago Palma, dos Santos, Lucas Lisboa, Santos, Victor Rocha, Sá, Paulo H. Miranda, Bonfim, Yasmin da Silva, Paranhos, José Vinicius Dantas, Ortega, Lucas Lemos, Nascimento, Lian F. Santana, Santos, Alexandre, Rönnau, Maikel Maciel, Winkler, Ingrid, Nascimento, Erick G. Sperandio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738680/
https://www.ncbi.nlm.nih.gov/pubmed/36502188
http://dx.doi.org/10.3390/s22239486
_version_ 1784847607787421696
author Pagano, Tiago Palma
dos Santos, Lucas Lisboa
Santos, Victor Rocha
Sá, Paulo H. Miranda
Bonfim, Yasmin da Silva
Paranhos, José Vinicius Dantas
Ortega, Lucas Lemos
Nascimento, Lian F. Santana
Santos, Alexandre
Rönnau, Maikel Maciel
Winkler, Ingrid
Nascimento, Erick G. Sperandio
author_facet Pagano, Tiago Palma
dos Santos, Lucas Lisboa
Santos, Victor Rocha
Sá, Paulo H. Miranda
Bonfim, Yasmin da Silva
Paranhos, José Vinicius Dantas
Ortega, Lucas Lemos
Nascimento, Lian F. Santana
Santos, Alexandre
Rönnau, Maikel Maciel
Winkler, Ingrid
Nascimento, Erick G. Sperandio
author_sort Pagano, Tiago Palma
collection PubMed
description Head-mounted displays are virtual reality devices that may be equipped with sensors and cameras to measure a patient’s heart rate through facial regions. Heart rate is an essential body signal that can be used to remotely monitor users in a variety of situations. There is currently no study that predicts heart rate using only highlighted facial regions; thus, an adaptation is required for beats per minute predictions. Likewise, there are no datasets containing only the eye and lower face regions, necessitating the development of a simulation mechanism. This work aims to remotely estimate heart rate from facial regions that can be captured by the cameras of a head-mounted display using state-of-the-art EVM-CNN and Meta-rPPG techniques. We developed a region of interest extractor to simulate a dataset from a head-mounted display device using stabilizer and video magnification techniques. Then, we combined support vector machine and FaceMash to determine the regions of interest and adapted photoplethysmography and beats per minute signal predictions to work with the other techniques. We observed an improvement of 188.88% for the EVM and 55.93% for the Meta-rPPG. In addition, both models were able to predict heart rate using only facial regions as input. Moreover, the adapted technique Meta-rPPG outperformed the original work, whereas the EVM adaptation produced comparable results for the photoplethysmography signal.
format Online
Article
Text
id pubmed-9738680
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97386802022-12-11 Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques Pagano, Tiago Palma dos Santos, Lucas Lisboa Santos, Victor Rocha Sá, Paulo H. Miranda Bonfim, Yasmin da Silva Paranhos, José Vinicius Dantas Ortega, Lucas Lemos Nascimento, Lian F. Santana Santos, Alexandre Rönnau, Maikel Maciel Winkler, Ingrid Nascimento, Erick G. Sperandio Sensors (Basel) Article Head-mounted displays are virtual reality devices that may be equipped with sensors and cameras to measure a patient’s heart rate through facial regions. Heart rate is an essential body signal that can be used to remotely monitor users in a variety of situations. There is currently no study that predicts heart rate using only highlighted facial regions; thus, an adaptation is required for beats per minute predictions. Likewise, there are no datasets containing only the eye and lower face regions, necessitating the development of a simulation mechanism. This work aims to remotely estimate heart rate from facial regions that can be captured by the cameras of a head-mounted display using state-of-the-art EVM-CNN and Meta-rPPG techniques. We developed a region of interest extractor to simulate a dataset from a head-mounted display device using stabilizer and video magnification techniques. Then, we combined support vector machine and FaceMash to determine the regions of interest and adapted photoplethysmography and beats per minute signal predictions to work with the other techniques. We observed an improvement of 188.88% for the EVM and 55.93% for the Meta-rPPG. In addition, both models were able to predict heart rate using only facial regions as input. Moreover, the adapted technique Meta-rPPG outperformed the original work, whereas the EVM adaptation produced comparable results for the photoplethysmography signal. MDPI 2022-12-05 /pmc/articles/PMC9738680/ /pubmed/36502188 http://dx.doi.org/10.3390/s22239486 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pagano, Tiago Palma
dos Santos, Lucas Lisboa
Santos, Victor Rocha
Sá, Paulo H. Miranda
Bonfim, Yasmin da Silva
Paranhos, José Vinicius Dantas
Ortega, Lucas Lemos
Nascimento, Lian F. Santana
Santos, Alexandre
Rönnau, Maikel Maciel
Winkler, Ingrid
Nascimento, Erick G. Sperandio
Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title_full Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title_fullStr Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title_full_unstemmed Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title_short Remote Heart Rate Prediction in Virtual Reality Head-Mounted Displays Using Machine Learning Techniques
title_sort remote heart rate prediction in virtual reality head-mounted displays using machine learning techniques
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738680/
https://www.ncbi.nlm.nih.gov/pubmed/36502188
http://dx.doi.org/10.3390/s22239486
work_keys_str_mv AT paganotiagopalma remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT dossantoslucaslisboa remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT santosvictorrocha remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT sapaulohmiranda remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT bonfimyasmindasilva remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT paranhosjoseviniciusdantas remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT ortegalucaslemos remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT nascimentolianfsantana remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT santosalexandre remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT ronnaumaikelmaciel remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT winkleringrid remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques
AT nascimentoerickgsperandio remoteheartratepredictioninvirtualrealityheadmounteddisplaysusingmachinelearningtechniques