Cargando…

Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim

Circularity of cellulose-based pre- and post-consumer wastes requires an integrated approach which has to consider the characteristics of the fibre polymer and the presence of dyes and additives from textile chemical processing as well. Fibre-to-fibre recycling is a condition to avoid downcycling of...

Descripción completa

Detalles Bibliográficos
Autores principales: Manian, Avinash P., Müller, Sophia, Braun, Doris E., Pham, Tung, Bechtold, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738703/
https://www.ncbi.nlm.nih.gov/pubmed/36501674
http://dx.doi.org/10.3390/polym14235280
_version_ 1784847613873356800
author Manian, Avinash P.
Müller, Sophia
Braun, Doris E.
Pham, Tung
Bechtold, Thomas
author_facet Manian, Avinash P.
Müller, Sophia
Braun, Doris E.
Pham, Tung
Bechtold, Thomas
author_sort Manian, Avinash P.
collection PubMed
description Circularity of cellulose-based pre- and post-consumer wastes requires an integrated approach which has to consider the characteristics of the fibre polymer and the presence of dyes and additives from textile chemical processing as well. Fibre-to-fibre recycling is a condition to avoid downcycling of recycled material. For cellulose fibres regeneration via production of regenerated cellulose fibres is the most promising approach. Textile wastes contain dyes and additives, thus a recycling technique has to be robust enough to process such material. In an ideal case the reuse of colorants can be achieved as well. At present nearly 80% of the regenerated cellulose fibre production utilises the viscose process, therefore this technique was chosen to investigate the recycling of dyed material including the reuse of the colorant. In this work, for the first time, a compilation of all required process steps to a complete circular concept is presented and discussed as a model. Indigo-dyed viscose fibres were used as a model to study cellulose recycling via production of regenerated cellulose fibres to avoid downcycling. Indigo was found compatible to the alkalisation and xanthogenation steps in the viscose process and blue coloured cellulose regenerates were recovered from indigo-dyed cellulose. A supplemental addition of reduced indigo to the cellulose solution was also found feasible to adjust colour depth in the regenerated cellulose to the level required for use as warp material in denim production. By combination of fibre recycling and indigo dyeing the conventional yarn dyeing in denim production can be omitted. Model calculations for the savings in water and chemical consumption demonstrate the potential of the process. The proportion of the substitution will depend on the collection rate of denim wastes and on the efficiency of the fibre regeneration process. Estimates indicate that a substitution of more than 70% of the cotton fibres by regenerated cellulose fibres could be achieved when 80% of the pre- and post-consumer denim wastes are collected. Therefore, the introduction of fibre recycling via regenerated cellulose fibres will also make a substantial impact on the cotton consumption for jeans production.
format Online
Article
Text
id pubmed-9738703
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97387032022-12-11 Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim Manian, Avinash P. Müller, Sophia Braun, Doris E. Pham, Tung Bechtold, Thomas Polymers (Basel) Article Circularity of cellulose-based pre- and post-consumer wastes requires an integrated approach which has to consider the characteristics of the fibre polymer and the presence of dyes and additives from textile chemical processing as well. Fibre-to-fibre recycling is a condition to avoid downcycling of recycled material. For cellulose fibres regeneration via production of regenerated cellulose fibres is the most promising approach. Textile wastes contain dyes and additives, thus a recycling technique has to be robust enough to process such material. In an ideal case the reuse of colorants can be achieved as well. At present nearly 80% of the regenerated cellulose fibre production utilises the viscose process, therefore this technique was chosen to investigate the recycling of dyed material including the reuse of the colorant. In this work, for the first time, a compilation of all required process steps to a complete circular concept is presented and discussed as a model. Indigo-dyed viscose fibres were used as a model to study cellulose recycling via production of regenerated cellulose fibres to avoid downcycling. Indigo was found compatible to the alkalisation and xanthogenation steps in the viscose process and blue coloured cellulose regenerates were recovered from indigo-dyed cellulose. A supplemental addition of reduced indigo to the cellulose solution was also found feasible to adjust colour depth in the regenerated cellulose to the level required for use as warp material in denim production. By combination of fibre recycling and indigo dyeing the conventional yarn dyeing in denim production can be omitted. Model calculations for the savings in water and chemical consumption demonstrate the potential of the process. The proportion of the substitution will depend on the collection rate of denim wastes and on the efficiency of the fibre regeneration process. Estimates indicate that a substitution of more than 70% of the cotton fibres by regenerated cellulose fibres could be achieved when 80% of the pre- and post-consumer denim wastes are collected. Therefore, the introduction of fibre recycling via regenerated cellulose fibres will also make a substantial impact on the cotton consumption for jeans production. MDPI 2022-12-02 /pmc/articles/PMC9738703/ /pubmed/36501674 http://dx.doi.org/10.3390/polym14235280 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Manian, Avinash P.
Müller, Sophia
Braun, Doris E.
Pham, Tung
Bechtold, Thomas
Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title_full Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title_fullStr Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title_full_unstemmed Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title_short Dope Dyeing of Regenerated Cellulose Fibres with Leucoindigo as Base for Circularity of Denim
title_sort dope dyeing of regenerated cellulose fibres with leucoindigo as base for circularity of denim
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738703/
https://www.ncbi.nlm.nih.gov/pubmed/36501674
http://dx.doi.org/10.3390/polym14235280
work_keys_str_mv AT manianavinashp dopedyeingofregeneratedcellulosefibreswithleucoindigoasbaseforcircularityofdenim
AT mullersophia dopedyeingofregeneratedcellulosefibreswithleucoindigoasbaseforcircularityofdenim
AT braundorise dopedyeingofregeneratedcellulosefibreswithleucoindigoasbaseforcircularityofdenim
AT phamtung dopedyeingofregeneratedcellulosefibreswithleucoindigoasbaseforcircularityofdenim
AT bechtoldthomas dopedyeingofregeneratedcellulosefibreswithleucoindigoasbaseforcircularityofdenim