Cargando…
Exploring Machine Learning-Based Fault Monitoring for Polymer-Based Additive Manufacturing: Challenges and Opportunities
Three-dimensional printing, often known as additive manufacturing (AM), is a groundbreaking technique that enables rapid prototyping. Monitoring AM delivers benefits, as monitoring print quality can prevent waste and excess material costs. Machine learning is often applied to automating fault detect...
Autores principales: | Sampedro, Gabriel Avelino R., Rachmawati, Syifa Maliah, Kim, Dong-Seong, Lee, Jae-Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738791/ https://www.ncbi.nlm.nih.gov/pubmed/36502146 http://dx.doi.org/10.3390/s22239446 |
Ejemplares similares
-
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
por: Bofill, Jherson, et al.
Publicado: (2023) -
A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions
por: Kim, Ryanne Gail, et al.
Publicado: (2023) -
Additive Manufacturing of Conducting Polymers: Recent
Advances, Challenges, and Opportunities
por: Criado-Gonzalez, Miryam, et al.
Publicado: (2021) -
Antimicrobial Polymers for Additive Manufacturing
por: González-Henríquez, Carmen Mabel, et al.
Publicado: (2019) -
Polymer-Based Additive Manufacturing: Process Optimisation for Low-Cost Industrial Robotics Manufacture
por: Walia, Kartikeya, et al.
Publicado: (2021)