Cargando…
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
SIMPLE SUMMARY: Recent AI methods in the automated analysis of histopathological imaging data associated with cancer have trended towards less supervision by humans. Yet, there are circumstances when humans cannot lend a hand to AI. Hence, we present an unsupervised method to learn meaningful featur...
Autores principales: | Tavolara, Thomas E., Gurcan, Metin N., Niazi, M. Khalid Khan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738801/ https://www.ncbi.nlm.nih.gov/pubmed/36497258 http://dx.doi.org/10.3390/cancers14235778 |
Ejemplares similares
-
Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images
por: Su, Ziyu, et al.
Publicado: (2022) -
DeepFocus: Detection of out-of-focus regions in whole slide digital images using deep learning
por: Senaras, Caglar, et al.
Publicado: (2018) -
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
por: Wang, Zhenzhen, et al.
Publicado: (2022) -
Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images
por: Ren, Jian, et al.
Publicado: (2019) -
BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images
por: Su, Ziyu, et al.
Publicado: (2023)