Cargando…

Development of Alkaline Phosphatase-Fused Mouse Prion Protein and Its Application in Toxic Aβ Oligomer Detection

Amyloid β (Aβ) oligomers play a key role in the progression of Alzheimer’s disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsukakoshi, Kaori, Kubo, Rikako, Ikebukuro, Kazunori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738830/
https://www.ncbi.nlm.nih.gov/pubmed/36498917
http://dx.doi.org/10.3390/ijms232314588
Descripción
Sumario:Amyloid β (Aβ) oligomers play a key role in the progression of Alzheimer’s disease (AD). Multiple forms of Aβ assemblies have been identified by in vitro and in vivo analyses; however, it is uncertain which oligomer is highly neurotoxic. Thus, understanding the pathogenesis of AD by detecting toxic Aβ oligomers is crucial. In this study, we report a fusion protein of cellular prion protein (PrPc) and alkaline phosphatase (ALP) from Escherichia coli as a sensing element for toxic Aβ oligomers. Since the N-terminus domain of PrPc (residue 23–111) derived from mice is known to bind to toxic Aβ oligomers in vitro, we genetically fused PrPc(23–111) to ALP. The developed fusion protein, PrP–ALP, retained both the binding ability of PrPc and enzymatic activity of ALP. We showed that PrP–ALP strongly bound to high molecular weight (HMW) oligomers but showed little or no affinity toward monomers. The observation that PrP–ALP neutralized the toxic effect of Aβ oligomers indicated an interaction between PrP–ALP and toxic HMW oligomers. Based on ALP activity, we succeeded in detecting Aβ oligomers. PrP–ALP may serve as a powerful tool for detecting toxic Aβ oligomers that may be related to AD progression.