Cargando…

Frame Structure Fault Diagnosis Based on a High-Precision Convolution Neural Network

Structural health monitoring and fault diagnosis are important scientific issues in mechanical engineering, civil engineering, and other disciplines. The basic premise of structural health work is to be able to accurately diagnose the fault in the structure. Therefore, the accurate fault diagnosis o...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Yingfang, Cai, Chaozhi, Chi, Yaolei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738882/
https://www.ncbi.nlm.nih.gov/pubmed/36502133
http://dx.doi.org/10.3390/s22239427
Descripción
Sumario:Structural health monitoring and fault diagnosis are important scientific issues in mechanical engineering, civil engineering, and other disciplines. The basic premise of structural health work is to be able to accurately diagnose the fault in the structure. Therefore, the accurate fault diagnosis of structure can not only ensure the safe operation of mechanical equipment and the safe use of civil construction, but also ensure the safety of people’s lives and property. In order to improve the accuracy fault diagnosis of frame structure under noise conditions, the existing Convolutional Neural Network with Training Interference (TICNN) model is improved, and a new convolutional neural network model with strong noise resistance is proposed. In order to verify THE superiority of the proposed improved TICNN in anti-noise, comparative experiments are carried out by using TICNN, One Dimensional Convolution Neural Network (1DCNN) and First Layer Wide Convolution Kernel Deep Convolution Neural Network (WDCNN). The experimental results show that the improved TICNN has the best anti-noise ability. Based on the improved TICNN, the fault diagnosis experiment of a four-story steel structure model is carried out. The experimental results show that the improved TICNN can obtain high diagnostic accuracy under strong noise conditions, which verifies the advantages of the improved TICNN.