Cargando…
Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants
The polymeric insulation used in nuclear power plants (NPPs) carries the risk of molecular breakage due to oxidation and hydrolysis in the event of an accident. With this in mind, tubular specimens of flame-retardant ethylene-propylene-diene rubber (FR-EPDM) insulation were obtained by taking conduc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738963/ https://www.ncbi.nlm.nih.gov/pubmed/36501715 http://dx.doi.org/10.3390/polym14235318 |
_version_ | 1784847681746632704 |
---|---|
author | Ohki, Yoshimichi Hirai, Naoshi Okada, Sohei |
author_facet | Ohki, Yoshimichi Hirai, Naoshi Okada, Sohei |
author_sort | Ohki, Yoshimichi |
collection | PubMed |
description | The polymeric insulation used in nuclear power plants (NPPs) carries the risk of molecular breakage due to oxidation and hydrolysis in the event of an accident. With this in mind, tubular specimens of flame-retardant ethylene-propylene-diene rubber (FR-EPDM) insulation were obtained by taking conductors out of a cable harvested from an NPP. Similar tubular specimens were made from a newly manufactured cable and those aged artificially using a method called the “superposition of time-dependent data.” The inner and outer surfaces of each tubular specimen were subjected to various instrumental analyses to examine their oxidation, moisture uptake, and cross-linking. As a result, it has become clear that oxygen penetrates the cable through gaps between the twisted conductor strands. Meanwhile, water vapor diffuses more often through the sheath than through gaps between the conductor strands. Of the two methods used to simulate design-based accidents in NPPs, the one used to simulate the designed loss-of-coolant accident is more severe to FR-EPDM than the one used to simulate the designed severe accident. In addition, the validity of the method called the “superposition of time-dependent data,” which is used to give artificial aging treatments to cable samples, was confirmed. Measurements of spin-spin relaxation time and residual dipolar coupling using time-domain nuclear magnetic resonance were found suitable to use to obtain information on the cross-linking of FR-EPDM insulation. |
format | Online Article Text |
id | pubmed-9738963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97389632022-12-11 Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants Ohki, Yoshimichi Hirai, Naoshi Okada, Sohei Polymers (Basel) Article The polymeric insulation used in nuclear power plants (NPPs) carries the risk of molecular breakage due to oxidation and hydrolysis in the event of an accident. With this in mind, tubular specimens of flame-retardant ethylene-propylene-diene rubber (FR-EPDM) insulation were obtained by taking conductors out of a cable harvested from an NPP. Similar tubular specimens were made from a newly manufactured cable and those aged artificially using a method called the “superposition of time-dependent data.” The inner and outer surfaces of each tubular specimen were subjected to various instrumental analyses to examine their oxidation, moisture uptake, and cross-linking. As a result, it has become clear that oxygen penetrates the cable through gaps between the twisted conductor strands. Meanwhile, water vapor diffuses more often through the sheath than through gaps between the conductor strands. Of the two methods used to simulate design-based accidents in NPPs, the one used to simulate the designed loss-of-coolant accident is more severe to FR-EPDM than the one used to simulate the designed severe accident. In addition, the validity of the method called the “superposition of time-dependent data,” which is used to give artificial aging treatments to cable samples, was confirmed. Measurements of spin-spin relaxation time and residual dipolar coupling using time-domain nuclear magnetic resonance were found suitable to use to obtain information on the cross-linking of FR-EPDM insulation. MDPI 2022-12-05 /pmc/articles/PMC9738963/ /pubmed/36501715 http://dx.doi.org/10.3390/polym14235318 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ohki, Yoshimichi Hirai, Naoshi Okada, Sohei Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title | Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title_full | Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title_fullStr | Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title_full_unstemmed | Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title_short | Penetration Routes of Oxygen and Moisture into the Insulation of FR-EPDM Cables for Nuclear Power Plants |
title_sort | penetration routes of oxygen and moisture into the insulation of fr-epdm cables for nuclear power plants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738963/ https://www.ncbi.nlm.nih.gov/pubmed/36501715 http://dx.doi.org/10.3390/polym14235318 |
work_keys_str_mv | AT ohkiyoshimichi penetrationroutesofoxygenandmoistureintotheinsulationoffrepdmcablesfornuclearpowerplants AT hirainaoshi penetrationroutesofoxygenandmoistureintotheinsulationoffrepdmcablesfornuclearpowerplants AT okadasohei penetrationroutesofoxygenandmoistureintotheinsulationoffrepdmcablesfornuclearpowerplants |