Cargando…

High-Pressure Depolymerization of Poly(lactic acid) (PLA) and Poly(3-hydroxybutyrate) (PHB) Using Bio-Based Solvents: A Way to Produce Alkyl Esters Which Can Be Modified to Polymerizable Monomers

The polyesters poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) used in various applications such as food packaging or 3D printing were depolymerized by biobased aliphatic alcohols—methanol and ethanol with the presence of para-toluenesulphonic acid (p-TSA) as a catalyst at a temperature of...

Descripción completa

Detalles Bibliográficos
Autores principales: Jašek, Vojtěch, Fučík, Jan, Ivanová, Lucia, Veselý, Dominik, Figalla, Silvestr, Mravcova, Ludmila, Sedlacek, Petr, Krajčovič, Jozef, Přikryl, Radek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739185/
https://www.ncbi.nlm.nih.gov/pubmed/36501628
http://dx.doi.org/10.3390/polym14235236
Descripción
Sumario:The polyesters poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) used in various applications such as food packaging or 3D printing were depolymerized by biobased aliphatic alcohols—methanol and ethanol with the presence of para-toluenesulphonic acid (p-TSA) as a catalyst at a temperature of 151 °C. It was found that the fastest depolymerization is reached using methanol as anucleophile for the reaction with PLA, resulting in the value of reaction rate constant (k) of 0.0425 min(−1) and the yield of methyl lactate of 93.8% after 120 min. On the other hand, the value of constant k for the depolymerization of PHB in the presence of ethanol reached 0.0064 min(−1) and the yield of ethyl 3-hydroxybutyrate was of 76.0% after 240 min. A kinetics study of depolymerization was performed via LC–MS analysis of alkyl esters of lactic acid and 3-hydroxybutanoic acid. The structure confirmation of the products was performed via FT-IR, MS, (1)H NMR, and (13)C NMR. Synthesized alkyl lactates and 3-hydroxybutyrates were modified into polymerizable molecules using methacrylic anhydride as a reactant and potassium 2-ethylhexanoate as a catalyst at a temperature of 80 °C. All alkyl esters were methacrylated for 24 h, guaranteeing the quantitative yield (which in all cases reached values equal to or of more than 98%). The methacrylation rate constants (k′) were calculated to compare the reaction kinetics of each alkyl ester. It was found that lactates reach afaster rate of reaction than 3-hydroxybutyrates. The value of k′ for themethacrylated methyl lactate reached 0.0885 dm(3)/(mol·min). Opposite to this result, methacrylated ethyl 3-hydroxybutyrate’s constant k′ was 0.0075 dm(3)/(mol·min). The reaction rate study was conducted by the GC-FID method and the structures were confirmed via FT-IR, MS, (1)H NMR, and (13)C NMR.